IntroductionObesity is a health issue worldwide. This study aimed to evaluate the beneficial effects of Pediococcus pentococcus PR-1 on the modulating of gut microbiota, inflammation and lipid metabolism in high-fat-diet (HFD)-fed zebrafish.MethodsAdult zebrafish were fed a commercial (C), high fat (H, 25% fat), probiotic (P, 106 CFU/g), or high fat with probiotic (HP) diets twice daily for 5 weeks. Gut microbiota were analysed using 16S rRNA gene sequencing. Gene expressions of intestinal cytokine, intestinal TJ protein, and liver lipid metabolism were analysed by quantitative real-time polymerase chain reaction. Biochemical and histological analysis were also performed.Results and discussionP. pentosaceus PR-1 reduced body weight and BMI, indicating its anti-obesity effect. The 16S rRNA sequencing results showed HFD induced a distinct gut microbiota structure from C group, which was restored by probiotic. P. pentosaceus PR-1 improved gut health by decreasing the abundance of Ralstonia and Aeromonas which were increased induced by HFD. Moreover, probiotic restored abundance of Fusobacteria, Cetobacterium and Plesiomonas, which were decreased in HFD-fed zebrafish. The results of quantitative real-time polymerase chain reaction showed probiotic suppressed HFD-induced inflammation by decreasing the expressions of IL-1b and IL-6. Levels of hepatic TNF-α, IL-1ß, and IL-6 were reduced by probiotic in HFD-fed zebrafish. Probiotic also ameliorated gut barrier function by increasing the expressions of occludin, Claudin-1, and ZO-1. Probiotic exerted anti-adipogenic activity through regulating the expressions of SREBP1, FAS and LEPTIN. Levels of hepatic triglyceride, total cholesterol, low density lipoprotein were also reduced by probiotic. Histological analysis showed probiotic alleviated liver steatosis and injury induced by HFD. P. pentosaceus PR-1 might be useful as a dietary health supplement, especially for reducing obesity.
Although probiotics have been isolated from different sources, few were isolated from traditional Chinese medicine. The current study firstly isolate Pulsatilla Radix-utilizing Pediococcus pentosaceus PR-1 from human faeces. Subsequently, the tolerance of PR-1 to low pH, bile salts, simulated gastric juice and succus entericus, antioxidant activity, antimicrobial activity, cholesterol-assimilation and antibiotics susceptibility were investigated. After 2 h incubation at pH 2.0, over 80% of PR-1 survived. The cell viability of PR-1 at 2 h under 0.1% bile salt condition was 99.2%. The survival rate of PR-1 in gastric juice and succus entericus were 64.48% and 81.86, respectively. Cell-free supernatant of PR-1 culture also showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. Besides, antioxidant activity of PR-1 CFS was significantly greater than cell pellet. PR-1 was shown resistant to kanamycin, streptomycin, vancomycin, and norfloxacin and able to lower cholesterol level to 72.5 ± 1.5%. In addition, PR-1 displayed γ-hemolysis and was non-pathogenic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.