Gradual degradation of the bearing vibration signal is usually studied as a nonstationary stochastic time series. Roller bearings are working at high speed in a heavy load environment so that the combination of bearing faults gradually degraded during the rotation might lead to unpredicted catastrophic accidents. The degradation process has the property of long-range dependence (LRD), so that the fractional Brownian motion (fBm) is taken into account for a prediction model. Because of the dramatic changes in the bearing degradation process, the Hurst exponent that describes the fBm will change during the degradation process. A priori Hurst value of the conventional fBm in the prediction is fixed, thus inducing a minor accuracy of the prediction. To avoid this problem, we propose an improved prediction method. Based on the following steps, at the initial data processing, a skip-over factor is selected as the characteristics parameter of the bearing degradation process. A multifractional Brownian motion (mfBm) replaces the fBm for the degradation modeling. We will show that also our mfBm has the same property of long-range dependence as the fBm. Moreover, a time-varying Hurst exponent H(t) is taken to replace the constant H in fBm. Finally, we apply the quantum-behaved partial swarm optimization (QPSO) to optimize H(t) for a finite interval. Some tests and corresponding experimental results will show that our model QPSO + mfBm have a much better performance on the prediction effect than fBm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.