With the development of satellite-terrestrial network (STN), mobile edge computing (MEC) servers are deployed at low orbit earth (LEO) satellites to provide computing services for user devices (UEs) in areas without terrestrial network coverage. There is symmetry between satellite networks and terrestrial networks, but there is asymmetry between their resources. Computing resources of satellites’ MEC servers may not be enough. The satellite-terrestrial cooperation is promising, where a satellite migrates tasks to a base station (BS) in an adjacent area, thus utilizing computing resources of the BS’s MEC server. Although there are some studies on computation offloading in STN, few studies consider a satellite as both a relay and a computing unit to assist UEs in computing tasks. This paper proposes a joint offloading decision and resource allocation scheme in MEC-enabled STN, which minimizes the completion delay of all UEs’ indivisible tasks. Firstly, the optimization problem is formulated and decomposed. Then, the proposed scheme based on potential game and the Lagrange multiplier method makes UEs’ task offloading decisions and allocates the satellite’s and the BS’s computing resources, thus obtaining the optimal solution through continuous iterations. Finally, the simulation results validate that the proposed scheme can obtain better gain than other baseline schemes.
Mobile edge computing (MEC)-enabled satellite–terrestrial networks (STNs) can provide task computing services for Internet of Things (IoT) devices. However, since some applications’ tasks require huge amounts of computing resources, sometimes the computing resources of a local satellite’s MEC server are insufficient, but the computing resources of neighboring satellites’ MEC servers are redundant. Therefore, we investigated inter-satellite cooperation in MEC-enabled STNs. First, we designed a system model of the MEC-enabled STN architecture, where the local satellite and the neighboring satellites assist IoT devices in computing tasks through inter-satellite cooperation. The local satellite migrates some tasks to the neighboring satellites to utilize their idle resources. Next, the task completion delay minimization problem for all IoT devices is formulated and decomposed. Then, we propose an inter-satellite cooperative joint offloading decision and resource allocation optimization scheme, which consists of a task offloading decision algorithm based on the Grey Wolf Optimizer (GWO) algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method. The optimal solution is obtained by continuous iterations. Finally, simulation results demonstrate that the proposed scheme achieves relatively better performance than other baseline schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.