Betel nut, the fruit of Areca catechu L, has a long medical history in Southeast Asia. It is native to Malaysia and is cultivated and processed extensively in subtropical regions, such as South China and India. Betel nut almost appears as a “snack” in various occasions in most parts of China. Clinically, betel nut can play a certain pharmacology role and was used in malaria, ascariasis, arthritis, enterozoic abdominalgia, stagnation of food, diarrhea, edema, and beriberi. The nervous excitement of betel nut chewing has made it gradually become popular. However, chewing betel nut can induce oral submucosal fibrosis (OSF) and oral cancer (OC). At the same time, long-term chewing of betel nut also causes inhaled asthma, sperm reducing, betel quid dependence (BQD), and uterine and esophageal cancers. The main components of processed betel nut are the goal of this review. This study will mainly start from the pharmacological activity and toxicology study of betel nut in recent years, aiming to seek its advantages and disadvantages. In the meantime, this study will analyze and emphasize that betel nut and arecoline are the high-risk factors for oral cancer, which should arouse attention and vigilance of the public.
The cryopreservation of red blood cells (RBCs) holds great potential for ensuring timely blood transfusions and maintaining an adequate RBC inventory. The conventional cryoprotectants (CPAs) have a lot of limitations, and there is an obvious need for novel, efficient, and biocompatible CPAs. Here, it is shown for the first time that the addition of dimethylglycine (DMG) improved the thawed RBC recovery from 11.55 ± 1.40% to 72.15 ± 1.22%. We found that DMG could reduce the mechanical damage by inhibiting ice formation and recrystallization during cryopreservation. DMG can also scavenge reactive oxygen species (ROS) and maintain endogenous antioxidant enzyme activities to decrease oxidative damage during cryopreservation. Furthermore, the properties of thawed RBCs were found to be similar to the fresh RBCs in the control. Finally, the technique for order performance by similarity to ideal solution (TOPSIS) was used to compare the performance of glycerol (Gly), hydroxyethyl starch (HES), and DMG in cryopreservation, and DMG exhibited the best efficiency. This work confirms the use of DMG as a novel CPA for cryopreservation of RBCs and may promote clinical transfusion therapy.
Tissue and organ transplantation continues to be an effective measure for saving the lives of certain critically ill patients. The organ preservation methods that are commonly utilized in clinical practice are presently only capable of achieving short-term storage, which is insufficient for meeting the demand for organ transplantation. Ultra-low temperature storage techniques have garnered significant attention due to their capacity for achieving long-term, high-quality preservation of tissues and organs. However, the experience of cryopreserving cells cannot be readily extrapolated to the cryopreservation of complex tissues and organs, and the latter still confronts numerous challenges in its clinical application. This article summarizes the current research progress in the cryogenic preservation of tissues and organs, discusses the limitations of existing studies and the main obstacles facing the cryopreservation of complex tissues and organs, and finally introduces potential directions for future research efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.