DNA cascaded circuits have great potential in detecting low abundance molecules in complex biological environment due to their powerful signal amplification capability and nonenzymatic feature. However, the problem of the cascaded circuits is that the design is relatively complex and the kinetics is slow. Herein, a new design paradigm called catalyst‐accelerated circular cascaded circuits is proposed, where the catalyst inlet is implanted and the reaction speed can be adjusted by the catalyst concentration. This new design is very simple and only requires three hairpin probes. Meanwhile, the results of a series of studies demonstrate that the reaction speed can be accelerated and the sensitivity can be also improved. Moreover, endogenous mRNA can also be used as a catalyst to drive the circuits to amplify the detection of target miRNA in live cells and in mice. These catalyst‐accelerated circular cascaded circuits can substantially expand the toolbox for intracellular low abundance molecular detection.
Sensitive detection of miRNA targets in complex biological samples possesses great value in biopsy analysis and disease diagnosis but is still challenging because of low abundance and nonspecific interferences. In this work, self-primer DNA polymerization-propelled stochastic walkers (SWs) were proposed to detect miRNA-24 by combining magnetic microbeads (MMBs) and flow cytometry. The MMBs not only provide a three-dimensional interface for DNA walkers but also facilitate the enrichment and isolation of RNA targets from complex biological samples such as serum. The SWs can be initiated to walk through the entire surface of MMBs and transduce RNA walking into amplified fluorescence signals, with the detection limit of miRNA-24 at 0.95 pM. Moreover, this strategy integrating with flow cytometry was demonstrated to have good specificity with other homologous miRNAs. This platform offers promising applications in RNA biosensing and biomedical diagnostics.
MicroRNAs (miRNAs) can be used as biomarkers for the diagnosis of therapy of cancers. However, its low abandance and complex environment in biological samples hinder miRNA detection. A dual amplification...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.