This study presents the first record of the overall distribution of the seagrass Halophila beccarii Ascherson on the island of Hainan. Statistical and ecological methods were used to analyze the distribution of the species and the influence of environmental factors. Halophila beccarii was mainly distributed in the northwest and southeast of Hainan, in lagoons with a total area of 20.981 km2, including the largest H. beccarii area in China covering approximately 9.58 km2 in Xiaohai, Wanning; there were also 4.89 km2 in Xinying Bay, Danzhou, approximately 2.20 km2 in Huachang Bay, Chengmai, 1.88 km2 in Dongzhai Port, Haikou, 0.95 km2 in Xinying Port, Lingao, approximately 0.668 km2 in Laoyehai, Wanning, approximately 0.363 km2 in Hongpai, approximately 0.23 km2 in Maniao, and approximately 0.22 km2 in Huanglong Port, Lingao. The average coverage of H. beccarii measured at 7.08–56.33%, the density of stem and branch was 487.47–20,167.1 ind/m2, and the biomass measured at 1.57–112.94 gDW/m2. The growth distribution was mainly influenced by habitat type and, to a lesser extent, by tidal branching channels, heavy metal content (Cu, Pb, Cr, Zn) in the marine environment, and human activities in adjacent coastal areas.
Desert ecosystems are one of the most fragile ecosystems on Earth. The study of the effects of paleoclimatic and geological changes on genetic diversity, genetic structure, and species differentiation of desert plants is not only helpful in understanding the strategies of adaptation of plants to arid habitats, but can also provide reference for the protection and restoration of vegetation in desert ecosystem. Northwest China is an important part of arid regions in the northern hemisphere. Convolvulus tragacanthoides and Convolvulus gortschakovii are closely related and have similar morphology. Through our field investigation, we found that the annual precipitation of the two species distribution areas is significantly different. Thus, C. tragacanthoides and C. gortschakovii provide an ideal comparative template to investigate the evolutionary processes of closely related species, which have adapted to different niches in response to changes in paleogeography and paleoclimate in northwest China. In this study, we employed phylogeographical approaches (two cpDNA spacers: rpl14–rpl36 and trnT–trnY) and species distribution models to trace the demographic history of C. tragacanthoides and C. gortschakovii, two common subshrubs and small shrubs in northwest China. The results showed the following: (1) Populations of C. tragacanthoides in northwest China were divided into three groups: Tianshan Mountains—Ili Valley, west Yin Mountains—Helan Mountains‐Qinglian Mountains, and Qinling Mountains—east Yin Mountains. There was a strong correlation between the distribution of haplotypes and the floristic subkingdom. The three groups corresponded to the Eurasian forest subkingdom, Asian desert flora subkingdom, and Sino‐Japanese floristic regions, respectively. Thus, environmental differences among different flora may lead to the genetic differentiation of C. tragacanthoides in China. (2) The west Yin Mountains—Helan Mountains‐Qinglian Mountains, and Qinling Mountains—east Yin Mountains were thought to form the ancestral distribution range of C. tragacanthoides. (3) C. tragacanthoides and C. gortschakovii adopted different strategies to cope with the Pleistocene glacial cycle. Convolvulus tragacanthoides contracted to the south during the glacial period and expanded to the north during the interglacial period; and there was no obvious north–south expansion or contraction of C. gortschakovii during the glacial cycle. (4) The interspecific variation of C. tragacanthoides and C. gortschakovii was related to the orogeny in northwest China caused by the uplift of the Tibetan Plateau during Miocene. (5) The 200 mm precipitation line formed the dividing line between the niches occupied by C. tragacanthoides and C. gortschakovii, respectively. In this study, from the perspective of precipitation, the impact of the formation of the summer monsoon limit line on species divergence and speciation is reported, which provides a new perspective for studying the response mechanism of species to the formation of the summer monsoon lin...
Seagrass plays a vital role in the stability of marine ecology. The human development of marine resources has greatly affected the survival of seagrass. Seawater salinity is one of the important factors affecting its survival. Seagrass can survive in high saline environments for a long time and has evolved a variety of effective tolerance mechanisms. However, little is known about the molecular mechanisms underlying salinity tolerance by seagrass. Thalassia hemprichii is a seagrass species with a global distribution. It is also an ecologically important plant species in coastal waters. Nevertheless, the continuous environmental deterioration has gradually reduced the ecological niche of seagrasses. In this study, experiments were conducted to examine the effects of salinity changes on T. hemprichii. The result showed that the optimal salinity for T. hemprichii is 25 to 35 PSU. Although it can survive under high and low salinity, high mortality rates are common in such environments. Further analyses revealed that high salinity induces growth and developmental retardation in T. hemprichii and further causes yellowing. The parenchyma cells in T. hemprichii also collapse, the structure changes, soluble sugar accumulates rapidly, soluble proteins accumulate rapidly, the malondialdehyde (MDA) content reduces, and lipid peroxidation reduces in plant membranes. The molecular mechanisms of salt tolerance differ significantly between marine and terrestrial plants. We found 319 differentially expressed genes (DEGs). These genes regulate transport and metabolism, promoting environmental adaptation. The expression of these genes changed rapidly upon exposure of T. hemprichii to salinity stress for three hours. This is the first report on the physiological and biochemical changes and gene expression regulation of T. hemprichii under different salinity conditions. The findings of this study well deepen our understanding of T. hemprichii adaptations to changes in the shoal living environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.