The role of proteins in biomineralization has been examined in this work by studying the effect of ovalbumin on the stabilization of metastable CaCO(3) phases. In the absence of ovalbumin, the mixing of Na(2)CO(3) with CaCl(2) in an aqueous solution led to the formation of metastable phases that swiftly transformed into stable calcite crystals within 4 h under the experimental conditions. However, ovalbumin was found to favor the formation and stabilization of spherical vaterites, and the effect was concentration dependent. In the presence of 2 g/L ovalbumin, for example, vaterite microspheres with diameters ranging from 0.9 to 3.0 mum, composed of much smaller nanosized particles, were produced and stabilized even after 24 h following the initial mixing. In addition, the influence of ovalbumin on the CaCO(3) mineralization process from the very beginning was carefully examined. Both amorphous calcium carbonate (ACC) and vaterite were favored with ovalbumin present, but the ACC phase formed predominantly at the initial stage of mixing followed by the vaterite formation. Vaterite could then be embedded further in the mineralization process and become stabilized many hours afterward. The stabilizing effect of ovalbumin could arise from the strong binding between carboxylate groups of ovalbumin and the calcium ions on the CaCO(3) surface, preventing the metastable CaCO(3) from transformation via dissolution-recrystallization processes. The strong ovalbumin adsorption on vaterite microspheres was revealed from transmission electron microscopy imaging and thermogravimetric analysis, thereby providing useful evidence to support the proposed stabilizing mechanism.
With excessive consumption of sulfide ores, using low-grade Pb-Zn mixed ores to obtain Zn has attracted more attention. Acid leaching is an effective method for Zn recovery; however, a high concentration of inorganic acid brings severe environmental issues, including acidic wastewater, contaminated soil, etc. Compared with inorganic acid, organic acid showed lower acidity and toxicity. Herein, we applied an effective method for Zn recovery from carbonate-type Pb-Zn mixed ore (CMO), by combining organic acid leaching with mechanical activation. Among the organic acids applied (lactic, malonic, citric, amber, acetic, and tartaric one), lactic acid was selected for its high leaching efficiency. The optimum condition was identified via response surface methodology, with a lactic acid concentration of 1.15 mol/L, L/S ratio of 20, leaching time of 75 min, and temperature of 75 °C. The effect of mechanical activation on Zn leaching was further investigated. The leaching efficiency increased to 90.1% after mechanical activation, which was the highest leaching efficiency for organic acid leaching. Mineralogical characterization showed that the bulk minerals were milled into small particles while the proportion of amorphization increased. Such activation effects improved the acid-solubility of Zn speciation. This work provided a potential green method for metal recovery from low-grade sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.