PurposeAmblyopia affects not only spatial vision but also temporal vision. In this study, we aim to investigate temporal processing deficits in amblyopia.MethodsTwenty amblyopic patients (age: 27.0 ± 5.53 years, 15 males), and 25 normal observers (age: 25.6 ± 4.03 years, 15 males) were recruited in this study. Contrast thresholds in an orientation discrimination task in five target-mask stimulus onset asynchronies (SOA) conditions (16.7 ms, 33.4 ms, 50.0 ms, 83.4 ms, and ∞/no noise) were measured. An elaborated perceptual template model (ePTM) was fit to the behavioral data to derive the temporal profile of visual processing for each participant.ResultsThere were significant threshold differences between the amblyopic and normal eyes [F(1,43) = 10.6, p = 0.002] and a significant group × SOA interaction [F(2.75,118) = 4.98, p = 0.004], suggesting different temporal processing between the two groups. The ePTM fitted the data well (χ2 test, all ps > 0.50). Compared to the normal eye, the amblyopic eye had a lower template gain (p = 0.046), and a temporal window with lower peak and broader width (all ps < 0.05). No significant correlation was found between the observed temporal deficits and visual acuity in amblyopia (ps > 0.50). Similar results were found in the anisometropic amblyopia subgroup. No significant difference was found between the fellow eyes of the monocular amblyopia and the normal eyes.ConclusionAmblyopia is less efficient in processing dynamic visual stimuli. The temporal deficits in amblyopia, represented by a flattened temporal window, are likely independent of spatial vision deficits.
ObjectiveTo evaluate the contrast sensitivity function (CSF), chorioretinal thickness and vascular density as well as their relationships in subjects with simple early-stage high myopia.MethodsEighty-one young subjects were enrolled in this study. They were categorized into the simple high myopia group (sHM, n = 51) and the low-moderate myopia group (control group, n = 30). Monocular CSF under best correction was measured with the qCSF method. Retinal superficial and deep vascular density, inner and outer retinal thickness and choroidal thickness were measured using optical coherence tomography angiography.ResultsThe area under log CSF (AULCSF) and cutoff spatial frequency (Cutoff SF) of the sHM group were significantly reduced compared to those of the control group (P = 0.003 and P < 0.001, respectively). The parafoveal and perifoveal retinal thickness, deep vascular density and choroidal thickness were also significantly reduced in the sHM group (all P < 0.05). Multiple regression analysis revealed that AULCSF was significantly correlated with retinal deep vascular density, outer retinal thickness in the parafoveal and perifoveal areas (all P < 0.05).ConclusionCompared to low to moderate myopic eyes, patients with simple high myopia have thinner retinal and choroidal thickness, lower retinal vascular density, and reduced contrast sensitivity. Moreover, the CSF was correlated with the measures of chorioretinal structure and vasculature. The results suggest that the CSF is a sensitive functional endpoint in simple early-stage high myopia.
To investigate the temporal characteristics of visual processing at the fovea and the periphery in high myopia. METHODS.Eighteen low (LM, ≤ −0.50 and > −6.00 D) and 18 high myopic (HM, ≤ −6.00 D) participants took part in this study. The contrast thresholds in an orientation discrimination task under various stimulus onset asynchrony (SOA) masking conditions were measured at the fovea and a more peripheral area (7°) for the two groups. An elaborated perceptual template model (ePTM) was fit to the behavioral data for each participant.RESULTS. An analysis of variance with three factors (SOA, degree of myopia and eccentricity) was performed on the threshold data. The interaction between SOA and degree of myopia in the fovea was significant (F (4, 128) = 2.66, P = 0.036), suggesting that the masking effect had different temporal patterns between the two groups. The temporal profiles for the two groups were derived based on the ePTM model. The peak and the spread of the temporal window in the fovea were much lower and wider, respectively, in the HM group than that in the LM group (both Ps < 0.05). There was no significant difference in the peripheral temporal window between the two groups. CONCLUSIONS.High myopia is associated with defective temporal processing in the fovea, captured by a flattened temporal window.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.