Aiming at the scenario where edge devices rely on cloud servers for collaborative computing, this paper proposes an efficient edge-cloud collaborative reasoning method. In order to meet the application’s specific requirements for delay or accuracy, an optimal division point selection algorithm is proposed. A kind of multichannel supply chain price game model is constructed, and nonlinear dynamics theory is introduced into the research of the multichannel supply chain market. According to the actual competition situation, the different business strategies of retailers are considered in the modeling, which makes the model closer to the actual competition situation. Taking the retailer’s profit as an indicator, the influence of the chaos phenomenon on the market performance is analyzed. Compared with the previous studies, this thesis uses nonlinear theory to better reveal the operating laws of the economic system. This paper selects company A in the financial industry to acquire company B in Sweden. It is concluded that company B is currently facing financial difficulties, but its brand and technical advantages are far superior to company A. The indirect financial risk index of company B, that is, the investment environment, is analyzed, and the final investment environment score of the country where company B is located is 90 points, which is an excellent grade by scoring the investment environment of the target enterprise. Combining the investment environment score and the alarm situation prediction score, it is concluded that the postmerger financial risk warning level of company A is in serious alarm.
This paper is an in-depth study of international trade quantification models based on deep neural networks. Based on an in-depth analysis of global trade characteristics, a summary of existing problems, and a comparative analysis of various prediction methods, this paper constructs the ARIMA model, BP neural network (BPNN) model, and deep neural network (DNN) model to make a comprehensive comparison of international trade quantification. The results show that the nonlinear model has a global trade quantification has some advantages over linear models, and the deep model shows better prediction performance than the shallow model. In addition, preprocessing of the time series is considered to improve the prediction accuracy or shorten the model training time. The empirical modal analysis method (EMD) is introduced to decompose the time series into eigenmodal functions (IMFs) of different scales. Then the decomposed IMF series are arranged into a matrix using principal component analysis (PCA) to reduce the dimensionality and extract the data containing the most stock index information features; these features are then input into BPNN and DNN for combined prediction, thus constructing the combined models EMD-PCA-BPNN and EMD-PCA-DNN. Based on Melitz’s heterogeneous firm trade theory and its development by Chaney, a quantitative trade model incorporating production heterogeneity is constructed through a multisector extension. This paper adopts a general equilibrium analysis, which makes the modeling process pulse clear. The completed model has high flexibility and scalability, which can be applied to quantitative analysis of various problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.