Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients’ prognosis.
Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) are the main causative agents of hand, foot and mouth disease (HFMD) worldwide. Studies showed that EV-A71 and CV-A16 antagonize the interferon (IFN) signaling pathway; however, how IFN controls this viral infection is largely unknown. Here, we identified an IFN-stimulated gene, Transmembrane Protein 106A (TMEM106A), encoding a protein that blocks EV-A71 and CV-A16 infection. Combined approaches measuring viral infection, gene expression, and protein interactions uncovered that TMEM106A is required for optimal IFN-mediated viral inhibition and interferes with EV-A71 binding to host cells on the receptor scavenger receptor class B member 2 (SCARB2). Our findings reveal a new mechanism contributing to the IFN-mediated defense against EV-A71 and CV-A16 infection and provide a potential strategy for HFMD treatment by using the antiviral role of TMEM106A against enterovirus.
The type-I interferon (IFN-I) signaling pathway plays pivot roles in defending against pathogen invasion. Exogenous ssRNA and dsRNA could be immunogenic. RNA-mediated IFN signaling is extensively studied in the field. The incorrect functioning of this pathway leads to either autoimmune diseases or suffering from microorganism invasion. From the discrimination of “self” and “non-self” molecules by receptors to the fine-tune modulations in downstream cascades, all steps are under the surveillance featured by complex feedbacks and regulators. Studies in recent years highlighted the emerging roles of long noncoding RNAs (lncRNAs) as a reservoir for signaling regulation. LncRNAs bind to targets through the structure and sequence, and thus the mechanisms of action can be complex and specific. Here, we summarized lncRNAs modulating the RNA-activated IFN-I signaling pathway according to the event order during the signaling. We hope this review help understand how lncRNAs are participating in the regulation of IFN-I signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.