This paper deals with the design of a fault detection and isolation (FDI) system for an intelligent vehicle, a vehicle equipped with advanced driver assistance system (ADAS). The ADASs are outfitted with sensors for acquiring various information about the vehicle and its surroundings. Since these sensors are sensitive to faults, an efficient FDI system should be developed. The designed FDI system is comprised of three parts: a detection part, a decision part, and a fault management part. The detection part applies a generalized observer scheme (GOS). In the GOS, there is bank of extended Kalman filters (EKFs), each excited by all except one sensor measurement. The residual generated from the measurement update of each EKF is therefore sensitive to all sensor faults but one. This way, the fault sensitivity pattern of the residual makes it possible to detect a fault and locate the faulty sensor. The designed FDI system has been implemented and tested off-line with actual experiment data. Good results have been obtained with diagnosing individual sensor faults and outputting fault-free vehicle states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.