Aimed at improving upon the disadvantages of the single centralized Kalman filter for integrated navigation, including its fragile robustness and low solution accuracy, a nonlinear double model based on the improved decentralized federated extended Kalman filter (EKF) for integrated navigation is proposed. The multisensor error model is established and simplified in this paper according to the near-ground short distance navigation applications of small unmanned aerial vehicles (UAVs). In order to overcome the centralized Kalman filter that is used in the linear Gaussian system, the improved federated EKF is designed for multisensor-integrated navigation. Subsequently, because of the navigation requirements of UAVs, especially for the attitude solution accuracy, this paper presents a nonlinear double model that consists of the nonlinear attitude heading reference system (AHRS) model and nonlinear strapdown inertial navigation system (SINS)/GPS-integrated navigation model. Moreover, the common state parameters of the nonlinear double model are optimized by the federated filter to obtain a better attitude. The proposed algorithm is compared with multisensor complementary filtering (MSCF) and multisensor EKF (MSEKF) using collected flight sensors data. The simulation and experimental tests demonstrate that the proposed algorithm has a good robustness and state estimation solution accuracy.
Allocation efficiency is an important performance index to measure the quality of the allocation algorithm. In order to compute the efficiency, the volume of the subset of attainable moments must be solved. The efficiency of the redistributed pseudo inverse (RPI) algorithm depends on the choice of the pseudo-inverse matrix. The subset of attainable moments of RPI is a complex non-convex polyhedron. By analyzing twodimensional and three-dimensional allocation problems with a "micro-element" method, here we propose an approximate calculation algorithm to compute the volume of the non-convex polyhedron. In order to improve the allocation efficiency of RPI, genetic algorithm is used to find the best pseudo-inverse matrix. The simulation results show that the best pseudo-inverse matrix can be easily chosen by the proposed method and the high allocation efficiency is achieved.
To improve the precision and robustness of Unmanned Aerial Vehicle (UAV) integrated navigation systems, this paper presents an Interacting Multiple Model (IMM) navigation algorithm based on a Robust Cubature Kalman Filter (RCKF) with modified Zero Velocity Update (ZUPT) method assistance. This algorithm has a two-level fusion structure. At the bottom level, the Global Positioning System/Inertial Navigation System (GPS/INS) integrated navigation model and the Dynamic Zero Velocity Update/Inertial Navigation System (DZUPT/INS) integrated navigation model are established by modifying the Zero Velocity Update (ZUPT) method. Subsequently, the RCKF algorithm adopts a robust factor to weaken the influence of measurement outliers on the filter solution. At the top level, the estimation results of the GPS/INS integrated navigation model and the DZUPT/INS integrated navigation model are fused by the IMM algorithm. In addition to enhancing the robustness of filter estimation in the presence of measurement outliers, the proposed navigation algorithm also corrects navigation errors with ZUPT method assistance. Simulation and experimental analyses demonstrate the performance of the proposed navigation algorithm for UAVs.
INDEX TERMSInteracting Multiple Model, Robust Cubature Kalman Filter, Dynamic Zero Velocity Update, integrated navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.