Polymeric nanoparticles (NPs) containing liquid crystalline (LC) mesogens with tunable anisotropic morphologies have applications in various fields, but their preparation typically suffers from tedious and lowthroughput approaches. Here we present an efficient route to the preparation of anisotropic morphologies of azobenzene-containing block copolymers (BCPs) at high solids content via a polymerization-induced hierarchical self-assembly in ethanol. Various anisotropic NPs, including cuboids, short belts, lamellae, and ellipsoidal vesicles, have been obtained in a remarkably broad range of BCP compositions. The NPs exhibit a smectic phase with ordered stripes when observed under TEM. This internal LC ordering plays a significant role on the formation of these intriguing anisotropic morphologies. Morphological transitions from anisotropic to isotropic spheres can be obtained upon UV illumination due to the photoresponsive properties of the azobenzene mesogens. This work significantly expands the scope of accessible morphologies in PISA and suggests that the under explored LC BCPs may have an impactful role in the PISA field.
Wearable ultraviolet (UV) detectors have attracted considerable interest in the military and civilian realms. However, semiconductor-based UV detectors are easily interfered by elongation due to the elastic modulus incompatibility between rigid semiconductors and polymer matrix. Polymer detectors containing UV responsive moieties seriously suffer from slow response time. Herein, a UV illuminance–mechanical stress–electric signal conversion has been proposed based on well-defined ionic liquid (IL)-containing liquid crystalline polymer (ILCP) and highly elastic polyurethane (TPU) composite fabrics, to achieve a robust UV monitoring and shielding device with a fast response time of 5 s. Due to the electrostatic interactions and hydrogen bonds between ILs and LC networks, the ILCP-based device can effectively prevent the exudation of ILs and maintain stable performance upon stretching, bending, washing and 1000 testing cycles upon 365 nm UV irradiation. This work provides a generalizable approach toward the development of full polymer-based wearable electronics and soft robots.
Here, a self-powered optical switch (OS) composed of a surface-etched single-electrode triboelectric nanogenerator (TENG) and a polymer-dispersed liquid crystal (PDLC) film is reported. The working principle of the developed OS is that the liquid crystal alignment can be driven by triboelectrificationgenerated voltage, inducing the PDLC film to rapidly switch its initial translucent state to an instantaneous transparent state. An output voltage of 360 V is generated upon the PDLC film when a nitrile rubber film contacts with the TENG at an area of 25 cm 2 and a velocity of 0.4 m s −1 . As such, a wide dimming range with the relative transmitted light intensity from 0.05 to 0.85 can be achieved for the OS. Enabled by the unique mechano-electro-optical reaction, the effects of a series of structural parameters on the performance of the OS are methodically studied. Particularly, through integrating the OS with a visible-light-operated signal-processing circuit, a complete wireless sensing system with a fully power-free sensing node is developed. The paradigms of hand touching and foot stepping triggered wireless alarms are demonstrated, explicitly showing great potential for the system in many possible interactive human-machine interface applications, such as surveillance, security systems, remote operation, and automatic control.
Triboelectrification‐enabled self‐powered flexible electronic/optical systems have aroused a new surge of interest in recent years. All‐in‐one integration of such a system, which could significantly improve its adaptability, operability, and portability, still remains a challenge due to the absence of suitable architectures and integration schemes. Herein, a previously reported self‐powered optical switch (OS) is thoroughly remolded and upgraded to a fully integrated contact‐sliding‐triboelectrification‐driven dynamic optical transmittance modulator (OTM). The OTM is constructed with a multilayered structure, comprising a transparent triboelectrification top layer, a SiO2‐spaced polymer dispersed liquid crystal (PDLC) intermediate layer, and a flexible transparent conductive substrate. The working mechanism is that an alternating electric field can be induced once contact‐sliding occurs upon the OTM, rendering the PDLC layer immediately switching its initial translucent state to an instantaneous transparent state. As such, a decent dimming range with the relative transmitted light intensity from 0.17 to 0.72 can be achieved at low mechanical thresholds of contact pressure (≈20 kPa) and sliding velocity (≈0.3 m s−1). Moreover, for practical applications, demonstrations of information covering and selective visualization are successfully implemented without any extra optical elements nor external power supplies, explicitly showing great potential for the OTM in various self‐powered optical interactive applications.
In nature, converting environmental stimuli into diverse motions plays a major role for many living organisms, such as seedling phototropism [1] and shape deformation of sensitive plants. [2] The mechanical motions are mainly derived from surface interactions of materials with the environment and hierarchies of chemomechanical feedback. [3,4] These chemomechanical structures have inspired many scientists to design smart materials in a wide range of fields, such as Crosslinked liquid crystalline polymers (CLCPs) have garnered extensive attention in recent years for their significant values in the design of lightdriven soft actuators. However, poor processabilities due to the insoluble and infusible crosslinked networks prevent their practical applications severely. In this study, a weldable azobenzene-containing CLCP is designed with photo-and humidity-responsive actuations, which enables a cut-and-weld process to 3D CLCP architectures. The tensile properties and stability are almost unchanged after welding, much better than those of the films pasted by common adhesive tapes. Meanwhile, the mechanisms of the welding process are clarified on the base of surface hydrogen bonding and further crosslinking. By taking advantage of the cut-and-weld process, a 3D "claw" integrated into a robotic arm is realized for grabbing millimeter-scale objects by remote control. This work enhances significantly not only the processability of CLCP films but also the utilization of leftover pieces, which provides an efficient approach to create functional 3D structures from film precursors for the potential application in the smart materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.