are inventors on a provisional patent (PCT ref. no. SD2017-181-2PCT) filed by UC, San Diego that is titled "Assessing risk of de novo mutations in males".
The majority of children with Dravet syndrome (DS) are caused by de novo SCN1A mutations. To investigate the origin of the mutations, we developed and applied a new method that combined deep amplicon resequencing with a Bayesian model to detect and quantify allelic fractions with improved sensitivity. Of 174 SCN1A mutations in DS probands which were considered “de novo” by Sanger sequencing, we identified 15 cases (8.6%) of parental mosaicism. We identified another five cases of parental mosaicism that were also detectable by Sanger sequencing. Fraction of mutant alleles in the 20 cases of parental mosaicism ranged from 1.1% to 32.6%. Thirteen (65% of 20) mutations originated paternally and seven (35% of 20) maternally. Twelve (60% of 20) mosaic parents did not have any epileptic symptoms. Their mutant allelic fractions were significantly lower than those in mosaic parents with epileptic symptoms (P = 0.016). We identified mosaicism with varied allelic fractions in blood, saliva, urine, hair follicle, oral epithelium, and semen, demonstrating that postzygotic mutations could affect multiple somatic cells as well as germ cells. Our results suggest that more sensitive tools for detecting low‐level mosaicism in parents of families with seemingly “de novo” mutations will allow for better informed genetic counseling.
Long noncoding RNAs (lncRNAs) are emerging as key regulators of multiple essential biological processes involved in physiology and pathology. By analyzing the largest compendium of 14,166 samples from normal and tumor tissues, we significantly expand the landscape of human long noncoding RNA with a high-quality atlas: RefLnc (Reference catalog of LncRNA). Powered by comprehensive annotation across multiple sources, RefLnc helps to pinpoint 275 novel intergenic lncRNAs correlated with sex, age or race as well as 369 novel ones associated with patient survival, clinical stage, tumor metastasis or recurrence. Integrated in a user-friendly online portal, the expanded catalog of human lncRNAs provides a valuable resource for investigating lncRNA function in both human biology and cancer development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.