The global amount of solid waste has dramatically increased as a result of rapid population growth, accelerated urbanization, agricultural demand, and industrial development. The world's population is expected to reach 8.5 billion by 2030, while solid waste production will reach 2.59 billion tons. This will deteriorate the already strained environment and climate situation. Consequently, there is an urgent need for methods to recycle solid waste. Here, we review recent technologies to treat solid waste, and we assess the economic feasibility of transforming waste into energy. We focus on municipal, agricultural, and industrial waste. We found that methane captured from landfilled-municipal solid waste in Delhi could supply 8–18 million houses with electricity and generate 7140 gigawatt-hour, with a prospected potential of 31,346 and 77,748 gigawatt-hour by 2030 and 2060, respectively. Valorization of agricultural solid waste and food waste by anaerobic digestion systems could replace 61.46% of natural gas and 38.54% of coal use in the United Kingdom, and could reduce land use of 1.8 million hectares if provided as animal feeds. We also estimated a levelized cost of landfill solid and anaerobic digestion waste-to-energy technologies of $0.04/kilowatt-hour and $0.07/kilowatt-hour, with a payback time of 0.73–1.86 years and 1.17–2.37 years, respectively. Nonetheless, current landfill waste treatment methods are still inefficient, in particular for treating food waste containing over 60% water.
A water model is built to investigate the transport phenomena in the slab continuous casting mold. The gas flow rate, casting speed, and slab width on the slag entrainment are studied. The sliver defect in the IF steel plate is analyzed by the scanning electron microscope. The slag entrainment is recorded by the high-speed camera and the velocity is measured by the PIV. The results show that sliver defects contain Al, Ca, Si, Mg, Na, and O, which are mainly derived from the mold slag entrainment. With the casting speed increase, the fluid velocity from the submerged entry nozzle rises clearly and the slag droplets detach from slag layer. As the gas flow rate increases, the liquid moves upward with bubble floating and attacks the slag-steel interface. It is suggested the gas flow rate should be less than 3.3 NL/min for the slab width of 1300 mm and the casting speed of 1.2 m/min. With the slab width increasing from 1300 mm to 1700 mm, no slag entrainment zone is reduced. The gas flow rate should be below 2.2 NL/min with the casting speed increasing to 1.4 m/min, both for the slab width of 1300 mm and 1700 mm.
Capital structure decisions are important to the company. The capital structure is a combination of debt and equity used by a company to finance its overall operation and growth. Nowadays a company with a simple capital structure can hardly survive with the development of the market and society. As a result, it is quite significant to deeply study the structures and thus give more support to the company's development. However, the questions we solved rarely consider the impacts of frictions and taxes. Based on the Modigliani and Miller theory(MM theory)and the concept of the weighted average cost of capital (WACC), we demonstrate the conclusion that the proportion of debt in a company's capital structure makes no difference to the value of the company. This paper aims to help companies make better decisions and investments by estimating risks, returns, and the impacts from different capital structures on companies as well as the calculations of cashflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.