Obesity is a worldwide epidemic. Promoting browning of white adipose tissue (WAT) contributes to increased energy expenditure and hence counteracts obesity. Here we show that cordycepin (Cpn), a natural derivative of adenosine, increases energy expenditure, inhibits weight gain, improves metabolic profile and glucose tolerance, decreases WAT mass and adipocyte size, and enhances cold tolerance in normal and high-fat diet-fed mice. Cpn markedly increases the surface temperature around the inguinal WAT and turns the inguinal fat browner. Further investigations show that Cpn induces the development of brown-like adipocytes in inguinal and, to a less degree, epididymal WAT depots. Cpn also increases the expression of uncoupling protein 1 (UCP1) and other thermogenic genes in WAT and 3T3-L1 differentiated adipocytes, in which AMP-activated protein kinase (AMPK) plays an important role. Our results provide novel insights into the function of Cpn in regulating energy balance, and suggest a potential utility of Cpn in the treatment of obesity.
Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.
Autophagy in macrophages plays a key role in the pathogenesis and progression of atherosclerosis and has become a potential therapeutic target. Here we show that cordycepin (Cpn), a natural derivative of adenosine, markedly reduced atherosclerotic plaque and ameliorated associated symptoms such as dyslipidemia, hyperglycemia and inflammation in ApoE-/- mice. Supplementation of Cpn dose-dependently inhibited oxLDL-elicited foam cell formation and modulated intracellular cholesterol homeostasis by inhibiting cholesterol uptake and promoting cholesterol efflux in RAW264.7 macrophages. Notably, Cpn exhibited significant stimulating effect on macrophage autophagy, as estimated by western blotting, immunofluorescent staining and autophagic vacuoles observation by transmission electron microscopy. The inhibitive effects of Cpn on foam cell formation were dramatically deteriorated in the presence of various autophagy inhibitors, suggesting that autophagy participate, at least in part, in the atheroprotective role of Cpn. Further investigations using different autophagy inhibitors and specific siRNAs for AMP-activated protein kinase (AMPK) gamma1 subunit indicated that Cpn may stimulate macrophage autophagy through AMPK-mTOR pathway. Together, our results demonstrated Cpn as a potential therapeutic agent for the prevention and treatment of atherosclerosis, and the autophagic activity presents a novel mechanism for Cpn-mediated atheroprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.