Tungsten ditelluride has attracted intense research interest due to the recent discovery of its large unsaturated magnetoresistance up to 60 T. Motivated by the presence of a small, sensitive Fermi surface of 5d electronic orbitals, we boost the electronic properties by applying a high pressure, and introduce superconductivity successfully. Superconductivity sharply appears at a pressure of 2.5 GPa, rapidly reaching a maximum critical temperature (Tc) of 7 K at around 16.8 GPa, followed by a monotonic decrease in Tc with increasing pressure, thereby exhibiting the typical dome-shaped superconducting phase. From theoretical calculations, we interpret the low-pressure region of the superconducting dome to an enrichment of the density of states at the Fermi level and attribute the high-pressure decrease in Tc to possible structural instability. Thus, tungsten ditelluride may provide a new platform for our understanding of superconductivity phenomena in transition metal dichalcogenides.
Dirac Fermions with different helicities exist on the top and bottom surfaces of topological insulators, offering a rare opportunity to break the degeneracy protected by the no-go theorem. Through the application of Co clusters, quantum Hall plateaus were modulated for the topological insulator BiSbTeSe2, allowing an optimized surface transport. Here, using renormalization group flow diagrams, we show the extraction of two sets of converging points in the conductivity tensor space, revealing that the top surface exhibits an anomalous quantization trajectory, while the bottom surface retains the 1/2 quantization. Co clusters are believed to induce a sizeable Zeeman gap ( > 4.8 meV) through antiferromagnetic exchange coupling, which delays the Landau level hybridization on the top surface for a moderate magnetic field. A quasi-half-integer plateau also appears at −7.2 Tesla. This allows us to study the interesting physics of parity anomaly, and paves the way for further studies simulating exotic particles in condensed matter physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.