Cooperative automatic modulation classification (CAMC) using a swarm of sensors is intriguing nowadays as it would be much more robust than the conventional single-sensing-node automatic modulation classification (AMC) method. We propose a novel robust CAMC approach using vectorized soft decision fusion in this work. In each sensing node, the local Hamming distances between the graph features acquired from the unknown target signal and the training modulation candidate signals are calculated and transmitted to the fusion center (FC). Then, the global CAMC decision is made by the indirect vote which is translated from each sensing node’s Hamming-distance sequence. The simulation results demonstrate that, when the signal-to-noise ratio (SNR) was given by η≥0dB, our proposed new CAMC scheme’s correct classification probability Pcc could reach up close to 100%. On the other hand, our proposed new CAMC scheme could significantly outperform the single-node graph-based AMC technique and the existing decision-level CAMC method in terms of recognition accuracy, especially in the low-SNR regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.