A low temperature joining process has been developed to fabricate segmented half Heusler/skutterudite thermoelectric joints, and high temperature service behavior of the joints has been studied. The microstructure and electrical resistance across the joint before and after aging were investigated. The joint is well bonded and no cracks appear at the interfaces of the joint before and after aging, which can attribute to the formation of high melting point intermetallic compounds. The electrical resistance crosses the bonding layer smoothly and the contact resistance is low. These results show the process is effective, and promising for preparation of segmented thermoelectric devices.
Zone melting is one of the main techniques for preparing bismuth telluride-based crystal thermoelectric materials. In this research, a macro-micro-coupled simulation model was established to analyze the distribution of temperature and heat flow during the zone melting process. The simulation results show the melting temperature tends to affect the length of the melting zone, while the moving velocity of the melting furnace tends to affect the curvature of the melting and solidification interface. There are two small plateaus observed in the temperature curve of the central axis of bismuth telluride ingot when the moving velocity of the heat source is higher than 20 mm/h. As the moving velocity of the heat source increases, the platform effect is becoming more obvious. Based on the simulation results, the zone melt experiments were carried out both under microgravity condition on the Tiangong II space laboratory and conventional gravity condition on the ground. The experimental results indicate that the bismuth telluride-based crystal prepared in microgravity tends to possess more uniform composition. This uniform composition will lead to more uniform thermoelectric performance for telluride-based crystals. In the space condition, the influence of surface tension is much higher than that of gravity. The bismuth telluride ingot is very vulnerable to the influence of surface tension on the surface morphology during the solidification process. If the solidification process is not well controlled, it will be easier to produce uneven surface morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.