Water flooding effect evaluation is considered as the basic work to formulate comprehensive adjustment measures and improve the effectiveness of oilfield development. However, natural edge-bottom water energy is seldom considered in the conventional evaluation method. So, it cannot reflect the comprehensive effect of both natural edge-bottom water and injected water. Principal component analysis is a kind of multivariate statistical analysis method, which has been widely used in social science and other fields. Based on this method, the water flooding effect of 5 edge-bottom water reservoirs is comprehensively evaluated. First, 11 indicators are selected from four aspects, including natural edge-bottom water energy, production change, water injection development and utilization, energy maintenance and deficit compensation. Then, the selection of principal components is optimized. Based on the consideration of keeping as much information as possible to get more convincing results, three principal components are obtained. Finally, take five oilfields as examples to realize comprehensive evaluation. Results indicate that the natural energy of B oilfield is quite sufficient and water injection is timely in the later stage of development. So the water flooding effect is the best among five oilfields and the comprehensive principal component value is 1.434. That of A and C oilfields are 0.527 and 1.021, respectively, ranking 3 and 2. Although D oilfield has quite sufficient natural energy, water injection is not timely. So the water flooding effect is poor and the comprehensive principal component value is 0.259. That of E oilfield is − 3.241, indicating that it has the worst water flooding effect. The ranking results of five oilfields are consistent based on principal component analysis and Tong's chart, which are both B, C, A, D and E oilfield, verifying this method’s feasibility and practicability. Additionally, compared with the single index, it can reflect the comprehensive water flooding effect of both natural edge-bottom water and injected water. Specific oilfield cases are evaluated by the proposed method, which help for better understanding its application potential for evaluating the water flooding effect of natural edge-bottom water reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.