BackgroundDravet syndrome (DS) is a severe epileptic encephalopathy mainly caused by haploinsufficiency of the gene SCN1A, which encodes the voltage-gated sodium channel NaV1. 1 in the brain. While SCN1A mutations are known to be the primary cause of DS, other genes that may cause DS are poorly understood. Several genes with pathogenic mutations result in DS or DS-like phenotypes, which may require different drug treatment approaches. Therefore, it is urgent for clinicians, especially epilepsy specialists to fully understand these genes involved in DS in addition to SCN1A. Particularly for healthcare providers, a deep understanding of these pathogenic genes is useful in properly selecting and adjusting drugs in a more effective and timely manner.ObjectiveThe purpose of this study was to identify genes other than SCN1A that may also cause DS or DS-like phenotypes.MethodsA comprehensive search of relevant Dravet syndrome and severe myoclonic epilepsy in infancy was performed in PubMed, until December 1, 2021. Two independent authors performed the screening for potentially eligible studies. Disagreements were decided by a third, more professional researcher or by all three. The results reported by each study were narratively summarized.ResultsA PubMed search yielded 5,064 items, and other sources search 12 records. A total of 29 studies published between 2009 and 2021 met the inclusion criteria. Regarding the included articles, seven studies on PCDH19, three on SCN2A, two on SCN8A, five on SCN1B, two on GABRA1, three on GABRB3, three on GABRG2, and three on STXBP1 were included. Only one study was recorded for CHD2, CPLX1, HCN1 and KCNA2, respectively. It is worth noting that a few articles reported on more than one epilepsy gene.ConclusionDS is not only identified in variants of SCN1A, but other genes such as PCDH19, SCN2A, SCN8A, SCN1B, GABRA1, GABRB3, GABRG2, KCNA2, CHD2, CPLX1, HCN1A, STXBP1 can also be involved in DS or DS-like phenotypes. As genetic testing becomes more widely available, more genes associated with DS and DS-like phenotypes may be identified and gene-based diagnosis of subtypes of phenotypes in this spectrum may improve the management of these diseases in the future.
Background Propofol (2,6-diisopropylphenol) is one of the most frequently used anesthetic agents. One of the main side effects of propofol is to reduce blood pressure, which is thought to occur by inhibiting the release of catecholamines from sympathetic neurons. Here, the authors hypothesized that propofol-induced hypotension is not simply the result of suppression of the release mechanisms for catecholamines. Methods The authors simultaneously compared the effects of propofol on the release of norepinephrine triggered by high K+-induced depolarization, as well as ionomycin, by using neuroendocrine PC12 cells and synaptosomes. Ionomycin, a Ca2+ ionophore, directly induces Ca2+ influx, thus bypassing the effect of ion channel modulation by propofol. Results Propofol decreased depolarization (high K+)-triggered norepinephrine release, whereas it increased ionomycin-triggered release from both PC12 cells and synaptosomes. The propofol (30 μM)-induced increase in norepinephrine release triggered by ionomycin was dependent on both the presence and the concentration of extracellular Ca2+ (0.3 to 10 mM; n = 6). The enhancement of norepinephrine release by propofol was observed in all tested concentrations of ionomycin (0.1 to 5 μM; n = 6). Conclusions Propofol at clinically relevant concentrations promotes the catecholamine release as long as Ca2+ influx is supported. This unexpected finding will allow for a better understanding in preventing propofol-induced hypotension.
ObjectivesTo investigate the associations among the methylene tetrahydrofolate reductase rs1801133 C677T gene variant, food groups, and the risk of non-alcoholic fatty liver disease in the Chinese population.MethodsA study of gene polymorphism was conducted using the polymerase chain reaction method. A total of 4,049 adults participated in the study, and all underwent physical examination and genotyping. Participants filled out a dietary questionnaire to enable us to assess the frequency and quantity of food consumption.ResultsThe important variables identified as risk factors of non-alcoholic fatty liver disease were age, smoking, sex, body mass index, hyperlipidemia, diabetes, and methylene tetrahydrofolate reductase genotype (T – allele carriers). The homocysteine content was higher in the non-alcoholic fatty liver disease group than in the control group, and was higher in the T- allele than C- allele carriers. The homocysteine content was the highest in the T- allele carriers. Additionally, certain food groups such as milk and beans were associated with a lower risk of non-alcoholic fatty liver disease. Food groups such as meat, were associated with a higher risk of non-alcoholic fatty liver disease. Fresh fruit and vegetables, salted and smoked foods, desserts, cereals, fish, and eggs were not associated with the risk of non-alcoholic fatty liver disease. However, the influence of salted and smoked foods on non-alcoholic fatty liver disease was different in the C-allele and T-allele carriers of methylene tetrahydrofolate reductase (CT + TT vs. CC, OR = 1.196, P = 0.041 for 1–4 times food per week, OR = 1.580, P = 0.004 for 5–7 times per week). Similarly, salted and smoked foods were also a risk factor for the development of non-alcoholic steatohepatitis in patients with non-alcoholic fatty liver disease.ConclusionThis study found that the T-allele of the C677T variant of methylene tetrahydrofolate reductase was a risk factor for non-alcoholic fatty liver disease among Chinese people. These results can likely aid the development of novel approaches for managing non-alcoholic fatty liver disease risk.
BackgroundDravet syndrome (DS) is a refractory developmental and epileptic encephalopathy (EE) with a variety of comorbidities, including cognitive impairment, autism-like behavior, speech dysfunction, and ataxia, which can seriously affect the quality of life of patients and impose a great burden on society and their families. Currently, the pharmacological therapy is patient dependent and may work or not. Neuromodulation techniques, including vagus nerve stimulation (VNS), deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), responsive neurostimulation (RNS), and chronic subthreshold cortical stimulation (CSCS), have become common adjuvant therapies for neurological diseases, but their efficacy in the treatment of DS is unknown.MethodsWe searched Web of Science, PubMed, and SpringerLink for all published cases related to the neuromodulation techniques of DS until January 15, 2022. The systematic review was supplemented with relevant articles from the references. The results reported by each study were summarized narratively.ResultsThe Web of science, PubMed and SpringerLink search yielded 258 items. A total of 16 studies published between 2016 and 2021 met the final inclusion criteria. Overall, 16 articles (109 cases) were included in this study, among which fifteen (107 patients) were involved VNS, and one (2 patients) was involved DBS. After VNS implantation, seizures were reduced to ≥50% in 60 cases (56%), seizure free were found in 8 cases (7.5%). Only two DS patients received DBS treatment, and the initial outcomes of DBS implantation were unsatisfactory. The seizures significantly improved over time for both DBS patients after the addition of antiepileptic drugs.ConclusionMore than half of the DS patients benefited from VNS, and VNS may be effective in the treatment of DS. However, it is important to note that VNS does not guarantee improvement of seizures, and there is a risk of infection and subsequent device failure. Although DBS is a safe and effective strategy for the treatment of refractory epilepsy, the role of DBS in DS needs further study, as the sample size was small. Thus far, there is no strong evidence for the role of DBS in DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.