Hybrid nanocarbon, comprised of a diamond core and a graphitic shell with a variable sp(2)-/sp(3)-carbon ratio, is controllably obtained through sequential annealing treatment (550-1300 °C) of nanodiamond. The formation of sp(2) carbon increases with annealing temperature and the nanodiamond surface is reconstructed from amorphous into a well-ordered, onion-like carbon structure via an intermediate composite structure--a diamond core covered by a defective, curved graphene outer shell. Direct dehydrogenation of propane shows that the sp(2)-/sp(3)-nanocomposite exhibits superior catalytic performance to that of individual nanodiamond and graphitic nanocarbon. The optimum catalytic activity of the diamond/graphene composite depends on the maximum structural defectiveness and high chemical reactivity of the ketone groups. Ketone-type functional groups anchored on the defects/vacancies are active for propene formation; nevertheless, once the oxygen functional groups are desorbed, the defects/vacancies alone might be active sites responsible for the C-H bond activation of propane.
Near-infrared (NIR) electroluminescence (EL) devices have been fabricated employing thulium complexes as emitting materials. The EL emissions at 1.4 and 0.8 μm were observed from the devices of tris-(dibenzoylmethanato)-mono-(bathophenanthroline or 1,10-phenonthroline) thulium [Tm(DBM)3bath or Tm(DBM)3phen] at room temperature and assigned to F34→H34 and F34→H36 transitions of Tm3+ ions, respectively. By comparison with the NIR emissions of four Tm complexes with different ligands, it was found that the first ligand played a more important role for the Tm3+ ion emissions rather than the second one. In order to meet the requirement of optical communication, both Tm(DBM)3bath and erbium [Er] (DBM)3bath were incorporated into EL devices so that a broadened EL emission band ranging from 1.4 to 1.6 μm was obtained, showing the potential application of Tm complexes for optical communication systems.
An interface microenvironment between nanocarbon and ionic liquids (ILs) is presented. By an entrapping effect, a few layers of ILs can be finely deposited on the surface of nanocarbon, endowing amazingly tailorable surface properties. The entrapped IL layer, which was believed to be unable to be charred under pyrolysis conditions alone, can be further carbonized to a functional carbon layer. C, B, and N were confirmed to share the same hexagonal ring in the resultant layer, which provides more designable electronic properties.
This study investigated the homogeneous gas-phase formation of polybrominated dibenzo-p-dioxin/dibenzofurans (PBDD/Fs) from 2-BP, 2,4-DBP, and 2,4,6-TBP as precursors. First, density functional theory (DFT) calculations were carried out for the formation mechanism. The geometries and frequencies of the stationary points were calculated at the MPWB1K/6-31+G(d,p) level, and the energetic parameters were further refined by the MPWB1K/6-311+G(3df,2p) method. Then, the formation mechanism of PBDD/Fs was compared and contrasted with the PCDD/F formation mechanism from 2-CP, 2,4-DCP, and 2,4,6-TCP as precursors. Finally, the rate constants of the crucial elementary reactions were evaluated by the canonical variational transition-state (CVT) theory with the small curvature tunneling (SCT) correction over a wide temperature range of 600-1200 K. Present results indicate that only BPs with bromine at the ortho position are capable of forming PBDDs. The study, together with works already published from our group, clearly shows an increased propensity for the dioxin formations from BPs over the analogous CPs. Multibromine substitutions suppress the PBDD/F formations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.