The coexistence of multiple stable equilibria in recurrent neural networks is an important dynamic characteristic for associative memory and other applications. In this paper, the existence and local Mittag-Leffler stability of multiple equilibria are investigated for a class of fractional-order recurrent neural networks with discontinuous and nonmonotonic activation functions. By using Brouwer s fixed point theory, several conditions are established to ensure the existence of 5 n equilibria, in which all the components of 4 n equilibria are located in the continuous intervals of the activation functions. and some of the components of 5 n − 4 n equilibria are located at some discontinuous points of the activation functions. The introduction of discontinuous activation functions makes the neural networks have more equilibria than those with continuous activation functions. Furthermore, some criteria are proposed to ensure local Mittag-Leffler stability of 3 n equilibria. The introduction of nonmonotonic activation functions makes the neural networks have more stable equilibria than those with monotonic activation functions. Two examples are given to illustrate the effectiveness of the results. INDEX TERMS Fractional-order recurrent neural network, discontinuous and nonmonotonic activation function, equilibrium point, local Mittag-Leffler stability.
This paper addresses the coexistence and local stability of multiple equilibrium points for fractional-order Cohen–Grossberg neural networks (FOCGNNs) with time delays. Based on Brouwer’s fixed point theorem, sufficient conditions are established to ensure the existence of
∏
i
=
1
n
(
2
K
i
+
1
)
equilibrium points for FOCGNNs. Through the use of Hardy inequality, fractional Halanay inequality, and Lyapunov theory, some criteria are established to ensure the local Lagrange stability and the local Lyapunov asymptotical stability of
∏
i
=
1
n
(
K
i
+
1
)
equilibrium points for FOCGNNs. The obtained results encompass those of integer-order Hopfield neural networks with or without delay as special cases. The activation functions are nonlinear and nonmonotonic. There could be many corner points in this general class of activation functions. The structure of activation functions makes FOCGNNs could have a lot of stable equilibrium points. Coexistence of multiple stable equilibrium points is necessary when neural networks come to pattern recognition and associative memories. Finally, two numerical examples are provided to illustrate the effectiveness of the obtained results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.