Extended state observer (ESO) is featured with online estimating both the system's states and the total effect of external disturbance as well as nonlinear uncertain dynamics. The original ESO design, proposed for the cascade-of-integrator system without measurement noise, has been well studied with theoretical foundation and many successful applications. In the last years, multifarious modified ESOs have also been developed to handle many engineering systems captured by the models with general nonlinear structure, time-delay, the noises with stochastic properties, and etc. This paper aims to comprehensively investigate the representative modified ESOs in recent years. Firstly, the ESO's design and tuning law are illustrated for general uncertain systems with multiple control inputs, multiple measured outputs and various uncertainties. The quantitative results regarding the estimation errors of ESO are also presented. Next, the extended state-based Kalman-typed filters to handle state estimation problem against both stochastic noises and uncertain dynamics are introduced. The consistency, stability, and asymptotic optimization of the proposed filters are rigorously shown. Furthermore, some novel designs of ESO to deal with the estimation problem of uncertain nonlinear systems with time-delay and measurement biases are discussed. We believe this overview will be helpful for practitioners in applications of recent modified ESOs.
In this paper we investigate the dynamic behavior of road traffic flows in an area represented by an origin-destination (O-D) network. Probably the most widely used model for estimating the distribution of O-D flows is the gravity model, [J. de D. Ortuzar and L. G. Willumsen, Modelling Transport (Wiley, New York, 1990)] which originated from an analogy with Newton's gravitational law. The conventional gravity model, however, is static. The investigation in this paper is based on a dynamic version of the gravity model proposed by Dendrinos and Sonis by modifying the conventional gravity model [D. S. Dendrinos and M. Sonis, Chaos and Social-Spatial Dynamics (Springer-Verlag, Berlin, 1990)]. The dynamic model describes the variations of O-D flows over discrete-time periods, such as each day, each week, and so on. It is shown that when the dimension of the system is one or two, the O-D flow pattern either approaches an equilibrium or oscillates. When the dimension is higher, the behavior found in the model includes equilibria, oscillations, periodic doubling, and chaos. Chaotic attractors are characterized by (positive) Liapunov exponents and fractal dimensions.(c) 1998 American Institute of Physics.
The Wigner-Ville distribution (WVD) based on the linear canonical transform (LCT) (WDL) not only has the advantages of the LCT but also has the good properties of WVD. In this paper, some new and important properties of the WDL are derived, and the relationships between WDL and some other time-frequency distributions are discussed, such as the ambiguity function based on LCT (LCTAF), the short-time Fourier transform (STFT), and the wavelet transform (WT). The WDLs of some signals are also deduced. A novel definition of the WVD based on the LCT and generalized instantaneous autocorrelation function (GWDL) is proposed and its applications in the estimation of parameters for QFM signals are also discussed. The GWDL of the QFM signal generates an impulse and the third-order phase coefficient of QFM signal can be estimated in accordance with the position information of such impulse. The proposed algorithm is fast because it only requires 1-dimensional maximization. Also the new algorithm only has fourth-order nonlinearity thus it has accurate estimation and low signal-to-noise ratio (SNR) threshold. The simulation results are provided to support the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.