BackgroundDyslipidemia in pregnancy are associated with gestational diabetes mellitus (GDM), preeclampsia, preterm birth and other adverse outcomes, which has been extensively studied in western countries. However, similar studies have rarely been conducted in Asian countries. Our study was aimed at investigating the associations between maternal dyslipidemia and adverse pregnancy outcomes among Chinese population.MethodsData were derived from 934 pairs of non-diabetic mothers and neonates between 2010 and 2011. Serum blood samples were assayed for fasting total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) concentrations during the first, second and third trimesters. The present study explored the associations between maternal lipid profile and pregnancy complications and perinatal outcomes. The pregnancy complications included GDM, preeclampsia and intrahepatic cholestasis of pregnancy (ICP); the perinatal outcomes included preterm birth, small/large for gestational age (SGA/LGA) infants and macrosomia. Odds ratios (ORs) and 95 % confidence intervals (95 % CIs) were calculated and adjusted via stepwise logistic regression analysis. Optimal cut-off points were determined by ROC curve analysis.ResultsAfter adjustments for confounders, every unit elevation in third-trimester TG concentration was associated with increased risk for GDM (OR = 1.37, 95 % CI: 1.18-1.58), preeclampsia (OR = 1.50, 95 % CI: 1.16-1.93), ICP (OR = 1.28, 95 % CI: 1.09-1.51), LGA (OR = 1.13, 95 % CI: 1.02-1.26), macrosomia (OR = 1.19, 95 % CI: 1.02-1.39) and decreased risk for SGA (OR = 0.63, 95 % CI: 0.40-0.99); every unit increase in HDL-C concentration was associated with decreased risk for GDM and macrosomia, especially during the second trimester (GDM: OR = 0.10, 95 % CI: 0.03-0.31; macrosomia: OR = 0.25, 95 % CI: 0.09-0.73). The optimal cut-off points for third-trimester TG predicting GDM, preeclampsia, ICP, LGA and SGA were separately ≥3.871, 3.528, 3.177, 3.534 and ≤2.530 mmol/L. The optimal cut-off points for third-trimester HDL-C identifying GDM, macrosomia and SGA were respectively ≤1.712, 1.817 and ≥2.238 mmol/L.ConclusionsAmong Chinese population, maternal high TG in late pregnancy was independently associated with increased risk of GDM, preeclampsia, ICP, LGA, macrosomia and decreased risk of SGA. Relative low maternal HDL-C during pregnancy was significantly associated with increased risk of GDM and macrosomia; whereas relative high HDL-C was a protective factor for both of them.
Rapeseed (Brassica napus), an important oilseed crop, has adapted to diverse climate zones and latitudes by forming three main ecotype groups, namely winter, semi-winter, and spring types. However, genetic variations underlying the divergence of these ecotypes are largely unknown. Here, we report the global pattern of genetic polymorphisms in rapeseed determined by resequencing a worldwide collection of 991 germplasm accessions. A total of 5.56 and 5.53 million singlenucleotide polymorphisms (SNPs) as well as 1.86 and 1.92 million InDels were identified by mapping reads to the reference genomes of ''Darmor-bzh'' and ''Tapidor,'' respectively. We generated a map of allelic drift paths that shows splits and mixtures of the main populations, and revealed an asymmetric evolution of the two subgenomes of B. napus by calculating the genetic diversity and linkage disequilibrium parameters. Selective-sweep analysis revealed genetic changes in genes orthologous to those regulating various aspects of plant development and response to stresses. A genome-wide association study identified SNPs in the promoter regions of FLOWERING LOCUS T and FLOWERING LOCUS C orthologs that corresponded to the different rapeseed ecotype groups. Our study provides important insights into the genomic footprints of rapeseed evolution and flowering-time divergence among three ecotype groups, and will facilitate screening of molecular markers for accelerating rapeseed breeding.
IntroductionEnvironmental stimulus, especially noise and light, is thought to disrupt sleep in patients in the intensive care unit (ICU). This study aimed to determine the physiological and psychological effects of ICU noise and light, and of earplugs and eye masks, used in these conditions in healthy subjects.MethodsFourteen subjects underwent polysomnography under four conditions: adaptation, baseline, exposure to recorded ICU noise and light (NL), and NL plus use of earplugs and eye masks (NLEE). Urine was analyzed for melatonin and cortisol levels. Subjects rated their perceived sleep quality, anxiety levels and perception of environmental stimuli.ResultsSubjects had poorer perceived sleep quality, more light sleep, longer rapid eye movement (REM) latency, less REM sleep when exposed to simulated ICU noise and light (P < 0.05). Nocturnal melatonin (P = 0.007) and cortisol secretion levels (P = 0.004) differed significantly by condition but anxiety levels did not (P = 0.06). Use of earplugs and eye masks resulted in more REM time, shorter REM latency, less arousal (P < 0.05) and elevated melatonin levels (P = 0.002).ConclusionsEarplugs and eye masks promote sleep and hormone balance in healthy subjects exposed to simulated ICU noise and light, making their promotion in ICU patients reasonable.
Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays. 35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74-RbohD-ROS signal pathway. We propose a pathway that involves ERF74 acting as an on-off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H O ) homeostasis in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.