Therapeutic outcome for the treatment of glioma was often limited due to drug resistance and low permeability of drug across the multiple physiological barriers, including the blood-brain barrier (BBB), and the blood-tumor barrier (BTB). In order to overcome these hurdles, we designed T7 and A7R dual peptides-modified liposomes (abbreviated as T7/A7R-LS) to efficiently co-delivery doxorubicin (DOX) and vincristine (VCR) to glioma in this study. T7 is a seven-peptide ligand of transferrin receptors (TfR) capable of circumventing the BBB and then targeting glioma. A7R is a d-peptide ligand of vascular endothelial growth factor receptor 2 (VEGFR 2) overexpressed on angiogenesis, presenting excellent glioma-homing property. By combining the dual-targeting delivery effect, the dual-modified liposomes displayed higher glioma localization than that of single ligand-modified liposomes or free drug. After loading with DOX and VCR, T7/A7R-LS showed the most favorable antiglioma effect in vivo. In conclusion, this dual-targeting, co-delivery strategy provides a potential method for improving brain drug delivery and antiglioma treatment efficacy.
opportunities for exploring magnetism, and toward spintronic applications in the 2D limit. [7][8][9] Among all the interface engineered heterostructures based on vdW layered systems, magnetic proximity effect is integral to manipulating spintronic, [10][11][12] superconducting, [13][14][15] and topological phenomena. [16][17][18] Magnetic skyrmions have been well studied due to their nontrivial topology, which leads to many interesting fundamental and dynamical properties. [19][20][21] These have been reported mostly for noncentrosymmteric single crystals, [22][23][24] ultrathin epitaxial system, [25,26] and magnetic multilayers. [27][28][29][30][31] Recently Néel-type skyrmions were observed in a vdW ferromagnet interfaced with an oxidized layer [32] or a transition metal dichalcogenide [33] with a control of the skyrmion phase through tuning of the ferromagnet thickness. Furthermore, with a variety of vdW magnets, skrymions phase could be created in their new interfaces with unique properties.Materials hosting multiple skyrmion phases add richness to the field, with an additional degree of freedom in designing Multiple magnetic skyrmion phases add an additional degree of freedom for skyrmion-based ultrahigh-density spin memory devices. Extending the field to 2D van der Waals magnets is a rewarding challenge, where the realizable degree of freedoms (e.g., thickness, twist angle, and electrical gating) and high skyrmion density result in intriguing new properties and enhanced functionality. In this work, a van der Waals interface, formed by two 2D ferromagnets Cr 2 Ge 2 Te 6 and Fe 3 GeTe 2 with a Curie temperature of ≈65 and ≈205 K, respectively, hosting two groups of magnetic skyrmions, is reported. Two sets of topological Hall effect signals are observed below 6s0 K when Cr 2 Ge 2 Te 6 is magnetically ordered. These two groups of skyrmions are directly imaged using magnetic force microscopy, and supported by micromagnetic simulations. Interestingly, the magnetic skyrmions persist in the heterostructure with zero applied magnetic field. The results are promising for the realization of skyrmionic devices based on van der Waals heterostructures hosting multiple skyrmion phases.The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.202110583.
We investigate the critical behavior and the duality property of the ferromagnetic q-state clock model on the square lattice based on the tensor-network formalism. From the entanglement spectra of local tensors defined in the original and dual lattices, we obtain the exact self-dual points for the model with q ≤ 5 and approximate self-dual points for q ≥ 6. We calculate accurately the lower and upper critical temperatures for the six-state clock model from the fixed-point tensors determined using the higher-order tensor renormalization group method and compare with other numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.