Microfluidics has emerged from the MEMS-technology as an important research field and a promising market. This paper gives an overview on one of the most important microfluidic components: the micropump. In the last decade, various micropumps have been developed. There are only a few review papers on microfluidic devices and none of them were dedicated only to micropumps. This review paper outlines systematically the pump principles and their realization with MEMS-technology. Comparisons regarding pump size, flow rate, and backpressure will help readers to decide their proper design before starting a microfluidics project. Different pump principles are compared graphically and discussed in terms of their advantages and disadvantages for particular applications.
We demonstrate phase and frequency stabilization of a diode laser at the thermal noise limit of a passive optical cavity. The system is compact and exploits a cavity design that reduces vibration sensitivity. The sub-Hz laser is characterized by comparison to a second independent system with similar fractional frequency stability (1 x 10 -15 at 1 s). The laser is further characterized by resolving a 2 Hz wide, ultranarrow optical clock transition in ultracold strontium.
In this letter, the authors report a system for magnetic manipulation of ferrofluid droplets and their dynamic behavior. The magnetic field was generated by an array of planar coils, which were fabricated on a double-sided printed circuit board (PCB). The permanent magnetic moment of the ferrofluid droplet was created by the field of a pair of permanent magnets. The motion of the ferrofluid droplet is further aligned in a virtual channel formed by a pair of planar coils. Two other planar coils on the other side of the PCB drive the droplet along this virtual channel. The direction of the droplet motion can be controlled by reversing the electric current in the coils. Based on the experimental results, a larger droplet size, a lower viscosity of the surrounding medium, and a higher electric current will increase the droplet velocity.
This paper reports experimental and numerical results of the deformation of a ferrofluid droplet on a superhydrophobic surface under the effect of a uniform magnetic field. A water-based ferrofluid droplet surrounded by immiscible mineral oil was stretched by a magnetic field parallel to the substrate surface. The results show that an increasing flux density increases the droplet width and decreases the droplet height. A numerical model was established to study the equilibrium shape of the ferrofluid droplet. The governing equations for physical fields, including the magnetic field, are solved by the finite volume method. The interface between the two immiscible liquids was tracked by the level-set method. Nonlinear magnetization was implemented in the model. Comparison between experimental and numerical results shows that the numerical model can predict well the nonlinear deformation of a ferrofluid droplet in a uniform magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.