A 10 mm-period, high-temperature superconducting (HTS) undulator consisting of twenty staggered-array GdBa2Cu3O7-x (GdBCO) bulk superconductors has been fabricated and tested successfully. Each GdBCO disk was machined into a half-moon shape with micro-meter accuracy and shrink-fitted into a slotted oxygen-free copper disk which provided pre-stress and effective conduction-cooling. The HTS undulator prototype, consisting of GdBCO disks, copper disks, and CoFe poles fitted in a long copper shell, was field-cooled (FC) magnetized in fields of up to 10 T at 10 K. An undulator field of 2.1 T in a 4 mm magnetic gap was obtained. This field is the largest reported yet for the same gap and period length and exceeds the target value of 2 T for the meter-long HTS undulator scheduled for the hard x-ray I-TOMCAT beamline in the Swiss Light Source 2.0. We have demonstrated that bulk superconductor based undulators can provide significantly improved performance over alternative technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.