Self-supervised learning shows great potential in monocular depth estimation, using image sequences as the only source of supervision. Although people try to use the high-resolution image for depth estimation, the accuracy of prediction has not been significantly improved. In this work, we find the core reason comes from the inaccurate depth estimation in large gradient regions, making the bilinear interpolation error gradually disappear as the resolution increases. To obtain more accurate depth estimation in large gradient regions, it is necessary to obtain high-resolution features with spatial and semantic information. Therefore, we present an improved DepthNet, HR-Depth, with two effective strategies: (1) re-design the skip-connection in DepthNet to get better high-resolution features and (2) propose feature fusion Squeeze-and-Excitation(fSE) module to fuse feature more efficiently. Using Resnet-18 as the encoder, HR-Depth surpasses all previous state-of-the-art(SoTA) methods with the least parameters at both high and low resolution. Moreover, previous SoTA methods are based on fairly complex and deep networks with a mass of parameters which limits their real applications. Thus we also construct a lightweight network which uses MobileNetV3 as encoder. Experiments show that the lightweight network can perform on par with many large models like Monodepth2 at high-resolution with only20%parameters. All codes and models will be available at https://github.com/shawLyu/HR-Depth.
Depth completion aims to recover a dense depth map from a sparse depth map with the corresponding color image as input. Recent approaches mainly formulate the depth completion as a one-stage end-to-end learning task, which outputs dense depth maps directly. However, the feature extraction and supervision in one-stage frameworks are insufficient, limiting the performance of these approaches. To address this problem, we propose a novel end-to-end residual learning framework, which formulates the depth completion as a two-stage learning task, i.e., a sparse-to-coarse stage and a coarse-to-fine stage. First, a coarse dense depth map is obtained by a simple CNN framework. Then, a refined depth map is further obtained using a residual learning strategy in the coarse-to-fine stage with coarse depth map and color image as input. Specially, in the coarse-to-fine stage, a channel shuffle extraction operation is utilized to extract more representative features from color image and coarse depth map, and an energy based fusion operation is exploited to effectively fuse these features obtained by channel shuffle operation, thus leading to more accurate and refined depth maps. We achieve SoTA performance in RMSE on KITTI benchmark. Extensive experiments on other datasets future demonstrate the superiority of our approach over current state-of-the-art depth completion approaches.
Depth completion aims to recover a dense depth map from a sparse depth map with the corresponding color image as input. Recent approaches mainly formulate the depth completion as a one-stage end-to-end learning task, which outputs dense depth maps directly. However, the feature extraction and supervision in one-stage frameworks are insufficient, limiting the performance of these approaches. To address this problem, we propose a novel end-to-end residual learning framework, which formulates the depth completion as a twostage learning task, i.e., a sparse-to-coarse stage and a coarseto-fine stage. First, a coarse dense depth map is obtained by a simple CNN framework. Then, a refined depth map is further obtained using a residual learning strategy in the coarse-tofine stage with coarse depth map and color image as input. Specially, in the coarse-to-fine stage, a channel shuffle extraction operation is utilized to extract more representative features from color image and coarse depth map, and an energy based fusion operation is exploited to effectively fuse these features obtained by channel shuffle operation, thus leading to more accurate and refined depth maps. We achieve SoTA performance in RMSE on KITTI benchmark. Extensive experiments on other datasets future demonstrate the superiority of our approach over current state-of-the-art depth completion approaches.
Self-supervised learning shows great potential in monocular depth estimation, using image sequences as the only source of supervision. Although people try to use the high-resolution image for depth estimation, the accuracy of prediction has not been significantly improved. In this work, we find the core reason comes from the inaccurate depth estimation in large gradient regions, making the bilinear interpolation error gradually disappear as the resolution increases. To obtain more accurate depth estimation in large gradient regions, it is necessary to obtain high-resolution features with spatial and semantic information. Therefore, we present an improved DepthNet, HR-Depth, with two effective strategies: (1) redesign the skip-connection in DepthNet to get better highresolution features and (2) propose feature fusion Squeezeand-Excitation(fSE) module to fuse feature more efficiently. Using Resnet-18 as the encoder, HR-Depth surpasses all previous state-of-the-art(SoTA) methods with the least parameters at both high and low resolution. Moreover, previous state-of-the-art methods are based on fairly complex and deep networks with a mass of parameters which limits their real applications. Thus we also construct a lightweight network which uses MobileNetV3 as encoder. Experiments show that the lightweight network can perform on par with many large models like Monodepth2 at high-resolution with only 20% parameters. All codes and models will be available at https: //github.com/shawLyu/HR-Depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.