Objectives Drug repurposing, which finds new indications for existing drugs, has received great attention recently. The goal of our work is to assess the feasibility of using electronic health records (EHRs) and automated informatics methods to efficiently validate a recent drug repurposing association of metformin with reduced cancer mortality.Methods By linking two large EHRs from Vanderbilt University Medical Center and Mayo Clinic to their tumor registries, we constructed a cohort including 32 415 adults with a cancer diagnosis at Vanderbilt and 79 258 cancer patients at Mayo from 1995 to 2010. Using automated informatics methods, we further identified type 2 diabetes patients within the cancer cohort and determined their drug exposure information, as well as other covariates such as smoking status. We then estimated HRs for all-cause mortality and their associated 95% CIs using stratified Cox proportional hazard models. HRs were estimated according to metformin exposure, adjusted for age at diagnosis, sex, race, body mass index, tobacco use, insulin use, cancer type, and non-cancer Charlson comorbidity index.Results Among all Vanderbilt cancer patients, metformin was associated with a 22% decrease in overall mortality compared to other oral hypoglycemic medications (HR 0.78; 95% CI 0.69 to 0.88) and with a 39% decrease compared to type 2 diabetes patients on insulin only (HR 0.61; 95% CI 0.50 to 0.73). Diabetic patients on metformin also had a 23% improved survival compared with non-diabetic patients (HR 0.77; 95% CI 0.71 to 0.85). These associations were replicated using the Mayo Clinic EHR data. Many site-specific cancers including breast, colorectal, lung, and prostate demonstrated reduced mortality with metformin use in at least one EHR.Conclusions EHR data suggested that the use of metformin was associated with decreased mortality after a cancer diagnosis compared with diabetic and non-diabetic cancer patients not on metformin, indicating its potential as a chemotherapeutic regimen. This study serves as a model for robust and inexpensive validation studies for drug repurposing signals using EHR data.
Background We studied the role of peripheral Neutrophil to Lymphocyte Ratio (NLR) on survival outcomes in colon and rectal cancer to determine if its inclusion improved prognostication within existing staging systems. Patients and Methods Disease free and overall survival (DFS and OS) Hazard Ratios (HR) of pretreatment NLR were calculated for 2536 stage I-III colon or rectal cancer patients and adjusted for age, positive/total number of nodes, T stage, and grade. The association of NLR with clinicopathologic features and survival was evaluated and compared to American Joint Committee on cancer (AJCC) TNM staging and Memorial Sloan Kettering Cancer Center (MSKCC) models. Results High NLR was significantly associated with worse DFS (HR: 1.36 [95% CI 1.08–1.70] p: 0.009) and OS (HR: 1.65 [95%CI 1.29–2.10] p<0.0005) in all stages for colon, but not rectal cancer patients. High NLR was significantly associated with site-specific worse prognosis which was stronger in the left vs right colon; an inverse relationship with grade was found. The impact of high NLR on DFS and OS occurred early with the majority of deaths within 2 years following surgery. Adjusted HRs for 5-year and 2-year outcomes in colon cancer per each additional 2-unit increase in NLR were 1.15 (95% CI 1.08–1.23) and 1.20 (95% CI 1.10–1.30), respectively. Addition of NLR enhanced prognostic utility of TNM (TNM alone vs. TNM + NLR: C-index 0. 60 vs. 0.68), and MSKCC (MSKCC alone vs MSKCC + NLR: C-index 0.71 vs. 0.73) models for colon cancer patients. Conclusion NLR is an independent prognostic variable for non-metastatic colon cancer that enhances existing clinical staging systems.
Altered chromatin structure is a hallmark of cancer, and inappropriate regulation of chromatin structure may represent the origin of transformation. Important studies have mapped human nucleosome distributions genome wide, but the role of chromatin structure in cancer progression has not been addressed. We developed a MNase-Transcription Start Site Sequence Capture method (mTSS-seq) to map the nucleosome distribution at human transcription start sites genome-wide in primary human lung and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they may serve as important early adenocarcinoma markers. We demonstrate that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. We conclude that DNA-directed nucleosome redistributions are widespread early in cancer progression. We have proposed an entirely new hierarchical model for chromatin-mediated genome regulation.
OBJECTIVEThe primary aim was to compare independent and joint performance of retrieving smoking status through different sources, including narrative text processed by natural language processing (NLP), patient-provided information (PPI), and diagnosis codes (ie, International Classification of Diseases, Ninth Revision [ICD-9]). We also compared the performance of retrieving smoking strength information (ie, heavy/light smoker) from narrative text and PPI.MATERIALS AND METHODSOur study leveraged an existing lung cancer cohort for smoking status, amount, and strength information, which was manually chart-reviewed. On the NLP side, smoking-related electronic medical record (EMR) data were retrieved first. A pattern-based smoking information extraction module was then implemented to extract smoking-related information. After that, heuristic rules were used to obtain smoking status-related information. Smoking information was also obtained from structured data sources based on diagnosis codes and PPI. Sensitivity, specificity, and accuracy were measured using patients with coverage (ie, the proportion of patients whose smoking status/strength can be effectively determined).RESULTSNLP alone has the best overall performance for smoking status extraction (patient coverage: 0.88; sensitivity: 0.97; specificity: 0.70; accuracy: 0.88); combining PPI with NLP further improved patient coverage to 0.96. ICD-9 does not provide additional improvement to NLP and its combination with PPI. For smoking strength, combining NLP with PPI has slight improvement over NLP alone.CONCLUSIONThese findings suggest that narrative text could serve as a more reliable and comprehensive source for obtaining smoking-related information than structured data sources. PPI, the readily available structured data, could be used as a complementary source for more comprehensive patient coverage.
Chromosome instability (CIN) is widely observed in both sporadic and hereditary colorectal cancer (CRC). Defects in APC and WNT signaling are primarily associated with CIN in hereditary CRC, but the genetic causes for CIN in sporadic CRC remain elusive. Using high‐density SNP array and exome data from The Cancer Genome Atlas (TCGA), we characterized loss of heterozygosity (LOH) and copy number variation (CNV) in the peripheral blood, normal colon, and corresponding tumor tissue in 15 CRC patients with proficient mismatch repair (MMR) and 24 CRC patients with deficient MMR. We found a high frequency of 18q LOH in tumors and arm‐specific enrichment of genetic aberrations on 18q in the normal colon (primarily copy neutral LOH) and blood (primarily copy gain). These aberrations were specific to the sporadic, pMMR CRC. Though in tumor samples genetic aberrations were observed for genes commonly mutated in hereditary CRC (eg, APC, CTNNB1, SMAD4, BRAF), none of them showed LOH or CNV in the normal colon or blood. DCC located on 18q21.1 topped the list of genes with genetic aberrations in the tumor. In an independent cohort of 13 patients subjected to Whole Genome Sequencing (WGS), we found LOH and CNV on 18q in adenomatous polyp and tumor tissues. Our data suggests that patients with sporadic CRC may have genetic aberrations preferentially enriched on 18q in their blood, normal colon epithelium, and non‐malignant polyp lesions that may prove useful as a clinical marker for sporadic CRC detection and risk assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.