Molybdenum disulfide (MoS2 ) and tungsten disulfide (WS2 ), two representative transition metal dichalcogenide materials, have captured tremendous interest for their unique electronic, optical, and chemical properties. Compared with MoS2 and WS2 , molybdenum ditelluride (MoTe2 ) and tungsten ditelluride (WTe2 ) possess similar lattice structures while having smaller bandgaps (less than 1 eV), which is particularly interesting for applications in the near-infrared wavelength regime. Here, few-layer MoTe2 /WTe2 nanosheets are fabricated by a liquid exfoliation method using sodium deoxycholate bile salt as surfactant, and the nonlinear optical properties of the nanosheets are investigated. The results demonstrate that MoTe2 /WTe2 nanosheets exhibit nonlinear saturable absorption property at 1.55 μm. Soliton mode-locking operations are realized separately in erbium-doped fiber lasers utilizing two types of MoTe2 /WTe2 -based saturable absorbers, one of which is prepared by depositing the nanosheets on side polished fibers, while the other is fabricated by mixing the nanosheets with polyvinyl alcohol and then evaporating them on substrates. Numerous applications may benefit from the nonlinear saturable absorption features of MoTe2 /WTe2 nanosheets, such as visible/near-infrared pulsed laser, materials processing, optical sensors, and modulators.
Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics.
Black phosphorus (BP) promises high‐performance humidity sensing, due to its unique electrical, mechanical, and surface properties. Different from traditional transistor‐based BP humidity sensors, herein, an all‐fiber sensing strategy is proposed by integrating BP nanosheets with etched single‐mode fiber (ESMF). The experiments show that transmitted light in the ESMF can be effectively modulated by the coated BP nanosheets as relative humidity varies from 35% to 80%. Due to the combination of unique sensing characteristics of BP materials with a high sensitivity of optical modulation strategy, highly responsive humidity sensing is achieved with the response time as fast as 7 ms. This work demonstrates a BP‐based all‐optical sensing platform not only for high‐performance humidity sensing, but also for opening up new opportunities for many potential vapor/gas sensing applications in the fields of biomedicine and chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.