Esophageal squamous cell carcinoma (ESCC) is a common cancer in China and has a high mortality rate. MicroRNAs (miRs) are a family of post-transcriptional regulators, which negatively regulate target gene expression. miR-613 has been revealed to be a diagnostic and prognostic biomarker in ESCC. However, the role of miR-613 in ESCC remains unclear. In the present study, miR-613 expression was identified to be reduced in tumor tissues in comparison with corresponding adjacent normal tissues. TargetScan and a dual-luciferase reporter assay verified glucose-6-phosphate dehydrogenase (G6PD) as a direct target of miR-613. In contrast with miR-613, G6PD expression was increased in tumor tissues compared with matched healthy tissues. Furthermore, overexpression of miR-613 inhibited cell migration and invasion of Eca109 cells compared with controls, while G6PD overexpression reversed the inhibition induced by miR-613, as determined by wound healing and Transwell assays. In addition, miR-613 overexpression decreased the mRNA and protein expression of G6PD, matrix metalloproteinase (MMP)2 and MMP9, and reduced the phosphorylation of signal transducer and activator of transcription 3 (STAT3) compared with controls, while G6PD reversed the effects of miR-613. However, miR-613 and G6PD did not affect the expression of STAT3. In conclusion, the aforementioned results suggest that miR-613 targets G6PD to suppress ESCC cell migration and invasion through reduced MMP2 and MMP9 expression and inactivation of the STAT3 signaling pathway. Thus, the present study may provide a new molecular foundation for treatment of ESCC.
Multidrug resistance (MDR) is the major underlying cause of the low 5-year survival rate of esophageal carcinoma. In this study, we developed a novel microemulsion system (SD-ME) co-loaded with docetaxel (DTX) and Schizandrin A, a potent chemotherapeutic agent and a potential drug resistance modulator, respectively. In the physicochemical characterization studies, SD-ME displayed a well-defined spherical shape and size (56.62 ± 4.16 nm), a narrow polydispersity index (PDI, 0.132 ± 0.002), and a negative surface charge (-19.81 ± 3.11 mv). In the cellular uptake studies, SD-ME with a DTX concentration of 30 μg/mL exhibited a 3.9-fold enhancement of DTX internalization in DTX-resistant EC109 (EC109/DDR) cells in comparison to that observed for EC109 cells, and the mechanisms were associated with reducing P-gp expression and inhibiting P-gp ATPease. The half-maximal inhibitory concentrations (IC) of DTX and SD-ME against EC109/DDR cells were 40.57 ± 0.39 and 3.59 ± 0.06 μg/mL, respectively. Likewise, the apoptotic rate of EC109/DDR treated with SD-ME increased up to 20-fold compared to that observed with free DTX. In anticancer efficacy studies in vivo, SD-ME markedly retarded the tumor growth of nude mice bearing EC109/DDR tumor xenografts compared with D-ME and free DTX throughout the duration of study. Consequently, mice treated with SD-ME had the highest survival rate (37.5%) during the observation period (70 days). In addition, there were no apparent side effects after the administration of SD-ME. Overall, our study provides evidence for SD-ME as an effective drug delivery system for enhanced MDR tumor treatment.
Background Soft tissue sarcoma (STS) is a malignant tumor of highly heterogeneous mesenchymal origin. STS has a biological pattern and clinical transformation with localized invasive growth and is susceptible to hematogenous metastasis. Local therapeutic strategies may treat recurrent and oligometastatic STS, including surgery and radiation therapy. This study aimed to evaluate the safety and efficacy of stereotactic body radiotherapy (SBRT) for recurrent and oligometastatic STS. Methods We retrospectively analyzed 37 recurrent and oligometastatic STS patients with 58 lesions treated with SBRT from 2009 to 2019 at our institution. Oligometastatic is defined as metastatic lesions less than or equal to 3. The primary endpoint was local control (LC); secondary endpoints were survival and toxicity. Results The median follow-up was 21.0 months (3.0 to 125.0 months). Among 37 patients, 18 were recurrent patients, and 19 were oligometastatic patients. Median LC was 25.0 months (95% CI 20.0–45.0). The 1-, 2-, and 3-year LC rates were 80.2%, 58.3%, and 46.6%, respectively. Median overall survival (OS) was 24.0 months (95% CI 13.0–28.0), and the survival rates after SBRT were 71.5%, 40.0%, and 29.1% at 1, 2, and 3-year, respectively. Median progression-free survival (PFS) was 10.0 months (95% CI 8.0–15.0 months), PFS rate after SBRT was 43.6%, 26.8%, and 18.4% at 1, 2, and 3 years, respectively. Late grade 3 radiation dermatitis was observed in one patient (2.7%). Using univariate and multivariate COX analysis, better OS, PFS, and LC were obtained in the histologic grade 1(G1) group, and tumor size and a number of lesions influenced LC. Conclusions SBRT is a safe and effective treatment for patients with recurrent and oligometastatic STS. Histological grade influences local control and survival. SBRT may be a promising treatment option for recurrent and oligometastatic STS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.