Mobile edge computing (MEC) enhanced satellite based internet of things (SAT-IoT) is an important complement for terrestrial networks based IoT, especially for the remote and depopulated areas. For MEC enhanced SAT-IoT networks with multiple satellites and multiple satellite gateways, the coupled user association, offloading decision, computing and communication resource allocation should be jointly optimized to minimize the latency and energy cost. In this paper, the latency and energy optimization for MEC enhanced SAT-IoT networks are formulated as a dynamic mixed-integer programming problem, which is hard to obtain the optimal solutions. To tackle this problem, we decompose the complex problem into two sub-problems. The first one is computing and communication resource allocation with fixed user association and offloading decision, and the second one is joint user association and offloading with optimal resource allocation. For the sub-problem of resource allocation, the optimal solution is proven to be obtained based on Lagrange multiplier method. And then, the second sub-problem is further formulated as a Markov decision process (MDP), and a joint user association and offloading decision with optimal resource allocation (JUAOD-ORA) is proposed based on deep reinforcement learning (DRL). Simulation results show that the proposed approach can achieve better long-term reward in terms of latency and energy cost. INDEX TERMS Latency and energy optimization, MEC, SAT-IoT, deep reinforcement learning.
Satellite-assisted internet of things (S-IoT), especially the S-IoT based on low earth orbit (LEO) satellite, plays an important role in future wireless systems. However, the limited on-board communication and computing resource and high mobility of LEO satellites make it hard to provide satisfied service for IoT users. To maximize the task completion rate under latency constraints, collaborative computing and resource allocation among LEO networks are jointly investigated in this paper, and the joint task offloading, scheduling, and resource allocation is formulated as a dynamic mixed-integer problem. To tack the complex problem, we decouple it into two subproblems with low complexity. First, the max-min fairness is adopted to minimize the maximum latency via optimal resource allocation with fixed task assignment. Then, the joint task offloading and scheduling is formulated as a Markov decision process with optimal communication and computing resource allocation, and deep reinforcement learning is utilized to obtain long-term benefits. Simulation results show that the proposed scheme has superior performance compared with other referred schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.