Erythropoietic protoporphyria (EPP; MIM 177000) is an inherited disorder caused by partial deficiency of ferrochelatase (FECH), the last enzyme in the heme biosynthetic pathway. In EPP patients, the FECH deficiency causes accumulation of free protoporphyrin in the erythron, associated with a painful skin photosensitivity. In rare cases, the massive accumulation of protoporphyrin in hepatocytes may lead to a rapidly progressive liver failure. The mode of inheritance in EPP is complex and can be either autosomal dominant with low clinical penetrance, as it is in most cases, or autosomal recessive. To acquire an in-depth knowledge of the genetic basis of EPP, we conducted a systematic mutation analysis of the FECH gene, following a procedure that combines the exon-by-exon denaturing-gradient-gel-electrophoresis screening of the FECH genomic DNA and direct sequencing. Twenty different mutations, 15 of which are newly described here, have been characterized in 26 of 29 EPP patients of Swiss and French origin. All the EPP patients, including those with liver complications, were heterozygous for the mutations identified in the FECH gene. The deleterious effect of all missense mutations has been assessed by bacterial expression of the respective FECH cDNAs generated by site-directed mutagenesis. Mutations leading to a null allele were a common feature among three EPP pedigrees with liver complications. Our systematic molecular study has resulted in a significant enlargement of the mutation repertoire in the FECH gene and has shed new light on the hereditary behavior of EPP.
Summary Background Congenital erythropoietic porphyria (CEP) is an autosomal recessive cutaneous porphyria caused by decreased activity of uroporphyrinogen III synthase (UROS). Its predominant characteristics include bullous cutaneous photosensitivity to visible light from early infancy, progressive photomutilation and chronic haemolytic anaemia. Due to its rarity and genetic heterogeneity, clinical phenotypes are unclear and its impact on health‐related quality of life (HRQoL) has not been previously assessed. Objectives To define comprehensively CEP phenotypes and assess their impact on HRQoL, and to correlate these factors with laboratory parameters. Methods A single observer assessed patients with CEP from four European countries. Results Twenty‐seven unrelated patients with CEP, aged between 7·6 and 65 years, participated in the study. The patients came from the U.K. (17), France (4), Switzerland (4) and Germany (2). Additional data were obtained for two deceased patients. Newly characterized features of CEP include acute‐onset cutaneous and noncutaneous symptoms immediately following sunlight exposure, and pink erythematous facial papules. There was a lack of consistent genotype–phenotype correlation in CEP. The main poor prognostic factors in CEP are the early age of disease onset and haematological complications. Conclusions CEP is a multisystem disease; cutaneous, ocular, oral and skeletal manifestations also contribute to disease severity and impact on HRQoL, in addition to the haematological complications. The rarity of the disease can lead to delayed diagnosis. The lack of consistent genotype–phenotype correlation in CEP suggests a contribution to phenotype from other factors, such as environment, patients’ photoprotective behaviour and genes other than UROS. There is currently an unmet need for multidisciplinary management of patients with CEP.
SummaryBackground In erythropoietic protoporphyria (EPP), an inherited disease of porphyrin-biosynthesis, the accumulation of protoporphyrin in the skin causes severely painful phototoxic reactions. Symptom prevention was impossible until recently when afamelanotide became available. Afamelanotide-induced skin pigmentation has statistically significantly improved light-tolerance, although the clinical significance of the statistical effect was unknown. Objectives To assess clinical effectiveness by recording compliance and safety during prolonged use. Methods We report longitudinal observations of 115 ambulatory patients with EPP, who were treated with a total of 1023 afamelanotide implants over a period of up to 8 years at two porphyria centres; one in Rome, Italy, and the other in Zurich, Switzerland. Results Since the treatment first became available in 2006, the number of patients treated with 16 mg afamelanotide implants rose continuously until June 2014, when 66% of all patients with EPP known to the porphyria centres were treated. Only three patients considered afamelanotide did not meet their expectations for symptom improvement; 23% discontinued the treatment for other, mostly compelling, reasons such as pregnancy or financial restrictions. The quality of life (QoL) scores, measured by an EPP-specific questionnaire, were 31 AE 24% of maximum prior to afamelanotide treatment, rose to 74% after starting afamelanotide and remained at this level during the entire observation period. Only minor adverse events attributable to afamelanotide, predominantly nausea, were recorded. Conclusion Based on the improved QoL scores, high compliance and low discontinuation rates, we conclude that afamelanotide exhibits good clinical effectiveness and good safety in EPP under long-term routine conditions.
Summary Background Congenital erythropoietic porphyria (CEP) is an autosomal recessive photomutilating porphyria with onset usually in childhood, where haematological complications determine prognosis. Due to its extreme rarity and clinical heterogeneity, management decisions in CEP are often difficult. Objectives To develop a management algorithm for patients with CEP based on data from carefully characterized historical cases. Methods A single investigator collated data related to treatments and their outcomes in 29 patients with CEP from the U.K., France, Germany and Switzerland. Results Six children were treated with bone marrow transplantation (BMT); five have remained symptomatically cured up to 11·5 years post‐transplantation. Treatments such as oral charcoal, splenectomy and chronic hypertransfusion were either of no benefit or were associated with complications and negative impact on health‐related quality of life. Lack of consistent genotype–phenotype correlation meant that this could not be used to predict disease prognosis. The main poor prognostic factors were early age of disease onset and severity of haematological manifestations. Conclusions A management algorithm is proposed where every patient, irrespective of disease severity at presentation, should receive a comprehensive, multidisciplinary clinical assessment and should then be reviewed at intervals based on their predicted prognosis, and the rate of onset of complications. A BMT should be considered in those with progressive, symptomatic haemolytic anaemia and/or thrombocytopenia. Uroporphyrinogen III synthase genotypes associated with poor prognosis would additionally justify consideration for a BMT. Rigorous photoprotection of the skin and eyes from visible light is essential in all patients.
Frameshift mutations in the last coding exon of the 5-aminolevulinate synthase (ALAS) 2 gene were described to activate the enzyme causing increased levels of zinc- and metal-free protoporphyrin in patients with X-linked dominant protoporphyria (XLDPP). Only two such so-called gain-of-function mutations have been reported since the description of XLDPP in 2008. In this study of four newly identified XLDPP families, we identified two novel ALAS2 gene mutations, a nonsense p.Q548X and a frameshift c.1651-1677del26bp, along with a known mutation (delAGTG) found in two unrelated families. Of relevance, a de novo somatic and germinal mosaicism was present in a delAGTG family. Such a phenomenon may explain the high proportion of this mutation in XLDPP worldwide. Enhancements of over 3- and 14-fold in the catalytic rate and specificity constant of purified recombinant XLDPP variants in relation to those of wild-type ALAS2 confirmed the gain of function ascribed to these enzymes. The fact that both p.Q548X and c.1651-1677del26bp are located in close proximity and upstream from the two previously described mutations led us to propose the presence of a large gain-of-function domain within the C-terminus of ALAS2. To test this hypothesis, we generated four additional nonsense mutants (p.A539X, p.G544X, p.G576X and p.V583X) surrounding the human XLDPP mutations and defined an ALAS2 gain-of-function domain with a minimal size of 33 amino acids. The identification of this gain-of-function domain provides important information on the enzymatic activity of ALAS2, which was proposed to be constitutively inhibited, either directly or indirectly, through its own C-terminus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.