Alaska pollock frame is a kind of byproduct that was rich in protein, amino acids, and mineral elements. However, the unfavorite bitterness may probably be produced in enzymatic processes. In this study, the bitterness accounted from the hydrolysates prepared by neutral proteases, alkaline proteases, papain, flavourzyme, and animal proteases, was investigated. The hydrolysis conditions, amino acids composition, metal ion composition, molecular weight distribution, and peptide composition of the hydrolysates were detected to figure out the relationship between bitterness and compositions of the hydrolysates. The hydrolysate digested by alkaline protease has the highest bitterness intensity, and that amino acids composition, peptide composition, and molecular weight distribution had a significant influence on the bitterness degree. Hydrophobic amino acids and alkaline amino acids, such as leucine, isoleucine, lysine, and so on are likely to contribute to the bitterness and molecular weight distribution of peptides that affect bitterness is mainly lower than 3,000 Da.
Practical applications
Fish bones would produce a bitter taste when reusing them by hydrolysis. Bitterness is one of unfavorable flavor as to consumers. The results of this study are of great significance for the further utilization of Alaska pollock frame. For products obtained from the hydrolysate of Alaska pollock frame, such as condiments and health care product the results of this study provide the processing technology of the lowest bitter hydrolysate, which can effectively improve the flavor and acceptability of the products.
Rainbow trout bone proteins were prepared by heating at 121°C for 30 min, followed by filtration, concentration, and lyophilization. Nutritional properties and flavor analyses of hydrolysates digested by five different enzymes were investigated, respectively. Results showed that the crude protein content of rainbow trout bone was 15.90% and had a well‐balanced nutritional value. The content of total amino acids was 983.64 mg/g. The amount of free amino acids of hydrolysates digested by alkaline protease, neutral protease, flavourzyme, papain, and trypsin for 3 hr was 207.83, 224.13, 1,001.59, 283.26, and 303.64 mg/g, respectively. During the hydrolysis, the main flavor compounds were identified by GC‐MS to be alcohols, aldehydes, ketones, acids, and alkanes. After hydrolysis, the main molecular weight of peptides was focused on the range of 1,000–3,000 Da in all enzymatic hydrolysates. This study provided a theoretical basis to comprehensive utilization of rainbow trout bone in food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.