Peat, as a heterogeneous mixture of decaying plant debris and microbial residues, has been widely used in many fields. However, little research focused on the impact of peat addition on food waste composting. To fill this gap, a composting experiment of food waste mixed with five varying percent peat 0, 5, 10, 15, and 20% (w/w, dry weight) was designed to investigate the effect of different dosages of peat on nitrogen conservation, physiochemical parameters, and fungal community dynamics during composting. The results showed that adding peat elevated the peak temperature of composting, lowered final pH, reduced ammonia emissions and increased the final total nitrogen content. Compared to control, adding 5, 10, 15, and 20% peat decreased ammonia emissions by 1.91, 10.79, 23.73, and 18.26%, respectively, during 42 days of composting. Moreover, peat addition increased fungal community diversity especially during maturation phase. The most two abundant phyla were Basidiomycota and Ascomycota in all treatments throughout the composting process. At the end of composting, in treatments with adding 10 and 15% peat, the richest fungi were Scedosporium spp. and Coprinopsis spp., respectively. Simultaneously, canonical correlation analyses showed that pH, moisture content, and seed germination index had significant association with fungal community composition. The study also showed that fungal community and nitrogen conservation had no direct obvious relation during composting. Overall, the results suggest that the addition of peat could efficiently enhance nitrogen conservation through reduction of ammonia emissions and 15% peat addition is the optimal formula for food waste composting.
Earthworms modulate the carbon and nitrogen cycling in terrestrial ecosystems, their effect may be affected by deposited compounds due to human activity such as industrial emissions. However, studies investigating how deposited compounds affect the role of earthworms in carbon cycling such as litter decomposition are lacking, although they are important for understanding the influence of deposited compounds on ecosystems and the bioremediation by applying earthworms. For this, we performed a 365-day in situ litterbag decomposition experiment in a deciduous (Quercus variabilis) and coniferous (Pinus massoniana) forest in southeast China. We manipulated nitrogen (N), sodium (Na) and polycyclic aromatic hydrocarbon (PAH) deposited compounds during litter decomposition with and without earthworms (Eisenia fetida). After one year, N, Na and PAH compounds all slowed down litter mass loss, with the effects of Na being the strongest. By contrast, E. fetida generally increased litter mass loss and their positive effects were uniformly maintained irrespective of the type of deposited compounds. Further, the pathways earthworms increasing litter mass loss varied among the types of deposited compounds and forests. As indicated by structural equation modeling, earthworms maintained their positive effects and mitigated the negative effects of deposited compounds by directly increasing litter mass loss and indirectly increasing soil pH and microbial biomass. Overall, the results indicate that the acceleration of earthworms on litter mass loss is not affected by deposited compounds, with the pathways of earthworms increasing litter mass loss varying among the types of deposited compounds and forests. This suggests that the effects of atmospheric deposited compounds and earthworms on terrestrial ecosystem processes need to be taken into account because earthworms may cancel out the detrimental influence of deposited compounds on litter decomposition.
Solar radiation has been regarded as a driver of litter decomposition in arid and semiarid ecosystems. Photodegradation of litter organic carbon (C) depends on chemical composition and water availability. However, the chemical changes in organic C that respond to solar radiation interacting with water pulses remain unknown. To explain changes in the chemical components of litter organic C exposed to UV-B, UV-A, and photosynthetically active radiation (PAR) mediated by water pulses, we measured the chemistry of marcescent Lindera glauca leaf litter by solid-state 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) over 494 days of litter decomposition with a microcosm experiment. Abiotic and biotic factors regulated litter decomposition via three pathways: first, photochemical mineralization of lignin methoxyl C rather than aromatic C exposed to UV radiation; second, the biological oxidation and leaching of cellulose O-alkyl C exposed to PAR and UV radiation interacts with water pulses; and third, the photopriming effect of UV radiation on lignin aromatic C rather than cellulose O-alkyl C under the interaction between radiation and water pulses. The robust decomposition index that explained the changes in the mass loss was the ratio of aromatic C to O-alkyl C (AR/OA) under radiation, but the ratio of hydrophobic to hydrophilic C (hydrophobicity), the carbohydrate C to methoxyl C ratio (CC/MC), and the alkyl C to O-alkyl C ratio (A/OA) under radiation were mediated by water pulses. Moreover, the photopriming effect and water availability promoted the potential activities of peroxidase and phenol oxidase associated with lignin degradation secreted by fungi. Our results suggest that direct photodegradation of lignin methoxyl C increases microbial accessibility to lignin aromatic C. Photo-oxidized compounds might be an additional C pool to regulate the stability of the soil C pool derived from plant litter by degrading lignin methoxyl and aromatic C.
Earthworms modulate carbon and nitrogen cycling in terrestrial ecosystems, but their effect may be compromised by the deposition of pollutants from industrial emissions. However, studies investigating how deposited compounds affect the role of earthworms in carbon cycling such as litter decomposition are lacking, although the interactions of earthworms and deposited compounds are important for understanding the impact of pollutants on ecosystems and the potential of earthworms in bioremediation. We performed a 365‐day in situ litterbag decomposition experiment in a deciduous ( Quercus variabilis ) and coniferous ( Pinus massoniana ) forest in southeast China. We manipulated nitrogen (N), sodium (Na), and polycyclic aromatic hydrocarbons (PAHs) as model compounds during litter decomposition with and without earthworms ( Eisenia fetida ). After one year, N, Na, and PAH all slowed down litter mass loss, with the effects of Na being the strongest. By contrast, E. fetida generally increased litter mass loss, and the positive effects were uniformly maintained irrespective of the type of compounds added. However, the pathways to how earthworms increased litter mass loss varied among the compounds added and the two forests studied. As indicated by structural equation modeling, earthworms mitigated the negative effects of deposited compounds by directly increasing litter mass loss and indirectly increasing soil pH and microbial biomass. Overall, the results indicate that the acceleration of litter mass loss by earthworms is little affected by deposited compounds, and that earthworms have the potential to mitigate negative impacts of pollutants on litter decomposition and ecosystem processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.