This study was conducted to investigate the effect of biofertilizers on the structure and diversity of the rhizosphere bacterial community of maize. Different biofertilizers were applied to maize. The physical and chemical properties of rhizosphere soil samples were analyzed and the rhizosphere bacteria were analyzed by 16S amplicon sequencing. The results showed that treatment with Bacillus licheniformis and B. amyloliquefaciens as biofertilizers increased the soil organic matter (SOM), total nitrogen, total phosphorus (TP), available phosphorus (AP), and available potassium (AK) contents, indicating that the plant growth-promoting rhizobacteria in the biofertilizers might help the host plant to produce root exudates that, in return, recruit beneficial communities due to available sugars, amino acids, organic acids, vitamins, and polymers. The rhizosphere of maize treated with B. subtilis biofertilizer had the highest diversity and richness. However, the rhizosphere treated with the combined bacterial strains had the lowest diversity and richness, which might be due to the directional increase of the abundance of some bacteria with special functions, but the decrease of the overall bacterial community diversity in the soil. The dominant bacterial phyla were Proteobacteria (32.2%–34.6%), Acidobacteria (15.0%–21.0%), Actinobacteria (13.1%–17.2%), and Gemmatimonadetes (9.0%–10.8%), and the dominant bacterial species were Aciditerrimonas ferrireducens JCM 15389 (4.3%–5.2%), Gemmatimonas aurantiaca (3.2%–4.1%), and Pyrinomonas methylaliphatogenes (2.1%–4.8%). The significantly enriched bacterial functions were associated with amino acid metabolism, sugar metabolism, and energy metabolism pathways. The results of a redundancy analysis showed that SOM, TP, and AK were the main factors affecting the microbial community structure in the maize rhizosphere. In conclusion, the application of biofertilizers increased the diversity and richness of the bacterial community in the maize rhizosphere soil. However, combined strain treatment was failed and not an ideal strategy due to the lowest abundance and diversity.
BACKGROUNDThe contents of some its crucial metabolites tend to decrease when Rhodiola crenulata is cultured at low altitude. Interestingly, it was found that an endophyte, Phialocephala fortinii, could alleviate this problem.RESULTSThere were 16 151 differential genes including 14 706 up‐regulated and 1445 down‐regulated unigenes with significant differences (P < 0.05), and a total of 1432 metabolites exhibited statistically significant (P < 0.05) metabolic differences comprising 27 different marker metabolites which showed highly significant values of VIP > 5 and P < 0.01. Results highlight differential regulation of 20 enzymatic genes that are involved in the biosynthesis of five different marker metabolites including acetaldehyde, homocysteine, cyclopropylamine, 1‐pyrrolinium and halistanol sulfate.CONCLUSIONSThe positive physiological effect of P. fortinii on R. crenulata encompasses differential regulation in carbohydrate metabolism, lipid metabolism and secondary metabolite synthesis. © 2020 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.