DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.
Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting symptoms and mortality, yet the detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes were associated with distinct clinical features including age, sex, severity, and disease stages of COVID-19. SARS-CoV-2 RNAs were found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within viral positive cells. Systemic up-regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis and developing effective therapeutic strategies for COVID-19.
The mammalian prefrontal cortex comprises a set of highly specialized brain areas containing billions of cells and serves as the centre of the highest-order cognitive functions, such as memory, cognitive ability, decision-making and social behaviour. Although neural circuits are formed in the late stages of human embryonic development and even after birth, diverse classes of functional cells are generated and migrate to the appropriate locations earlier in development. Dysfunction of the prefrontal cortex contributes to cognitive deficits and the majority of neurodevelopmental disorders; there is therefore a need for detailed knowledge of the development of the prefrontal cortex. However, it is still difficult to identify cell types in the developing human prefrontal cortex and to distinguish their developmental features. Here we analyse more than 2,300 single cells in the developing human prefrontal cortex from gestational weeks 8 to 26 using RNA sequencing. We identify 35 subtypes of cells in six main classes and trace the developmental trajectories of these cells. Detailed analysis of neural progenitor cells highlights new marker genes and unique developmental features of intermediate progenitor cells. We also map the timeline of neurogenesis of excitatory neurons in the prefrontal cortex and detect the presence of interneuron progenitors in early developing prefrontal cortex. Moreover, we reveal the intrinsic development-dependent signals that regulate neuron generation and circuit formation using single-cell transcriptomic data analysis. Our screening and characterization approach provides a blueprint for understanding the development of the human prefrontal cortex in the early and mid-gestational stages in order to systematically dissect the cellular basis and molecular regulation of prefrontal cortex function in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.