The neuroprotective properties of soy isoflavone (SIF) have been demonstrated by our previous studies and others, but its potential mechanism is not clear. Because of the key role of neurovascular dysfunction in the pathogenesis of Alzheimer's disease (AD), we hypothesized neurovascular tissue might be one neuroprotective target of SIF. In the present study, learning and memory ability, β-amyloid (Aβ) expressions both in neurovascular tissue and plasma, the receptor for advanced glycation end products (RAGE), low-density lipoprotein receptor-related protein (LRP)-1, nuclear factor-κB p65 (NF-κB p65), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expressions in neurovascular tissue were measured in Wistar rats following lateral cerebral ventricle administration of Aβ1-42 by miniosmotic pump with or without intragastric administration of SIF from 14 days before surgery to the end of experiment. The results showed that SIF could improve the impairment of learning and memory of rats induced by Aβ1-42, maintain Aβ homeostasis in brain, regulate the disordered expressions of RAGE/LRP-1 and restrain RAGE related NF-κB and inflammatory cytokines activation in neurovascular structure. These results suggested that SIF could protect Aβ-impaired learning and memory in rats, and its mechanism might be associated with the regulation of vascular Aβ transportation and vascular inflammatory reaction.
In recent years, global wind power capacity has grown steadily at an annual rate of around 20%. This has led to wind energy becoming the most important renewable energy source on a global scale, with the total installed capacity reaching 430 GW. However, the strong growth of offshore wind power has been somewhat inhibited due to a number of operational challenges that are yet to be addressed in full. The most important of these challenges appears to be the reliability of the wind turbine gearbox (WTG). WTGs are currently unable to survive their anticipated design lifetime of 20-25 years. Most of them hardly reach a useful operational lifetime of more than seven years without serious refurbishment or replacement and, for offshore wind turbines, failures have been reported as early as within one to two years. In this paper, the damage mechanisms influencing WTGs supported by finite element analysis have been considered and presented in the context of condition monitoring diagnosis and prognosis.
Active screen plasma (ASP) surface treatments have been widely utilized to improve surface performances of stainless steel in various applications. In our previous research, active screen plasma nitriding (ASPN) and active screen plasma co-alloying processes have been successfully employed to modify 316L stainless steel for the application of proton exchange membrane (PEM) fuel cell bipolar plates. In this study, a multistep active screen plasma coalloying surface treatment with niobium and nitrogen was proposed to produce a tailored layer structure on the surface of 316L stainless steel. By tailoring the applied bias of step, single-layer and duplex-layer structures can be formed on the surface of 316L stainless steel. Performance tests showed that the sample with a duplex-layer structure exhibited improved interfacial contact conductivity and higher corrosion potential than the sample with a singlelayer structure, indicating the feasibility of this multistep active screen plasma co-alloying surface treatment for PEM fuel cell bipolar plate application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.