Background
The thrombospondin-related anonymous protein (TRAP) was first discovered in the sporozoite of
Plasmodium falciparum
and TRAP family proteins are secreted by micronemes and transported to the parasite surface to participate in the invasion process. Various TRAP proteins have been identified in apicomplexan protozoans, but there have been few reports about TRAP proteins in
Babesia orientalis
.
Methods
The functional domain of TRAP2 in
B. orientalis
was cloned, sequenced, characterized and compared to the TRAP sequences of related apicomplexan parasites. The functional domain of BoTRAP2 was truncated, named BoTRAP2-1, and then cloned into the pET-28a expression vector. Rabbit anti-rBoTRAP2-1 polyclonal antibody was produced by immunizing three rabbits. Western blot analysis was used to identify the native form and immunogenicity of BoTRAP2. The localization of BoTRAP2 was identified by indirect fluorescence assay (IFA).
Results
The amplified genes of BoTRAP2 are 2817 bp in length, encoding a functional domain of about 938 aa with two vWFA domains, one TSP domain and one transmembrane domain. The amino acid sequence of BoTRAP2 has a high similarity with that of
B. bovis
and
B. gibsoni
. The predicted tertiary structure of truncated BoTRAP2-1 confirmed that BoTRAP2 contains two vWFA domains and a TSP domain, the main functional areas of the protein. The native BoTRAP2 was identified from
B. orientalis
lysate by using rabbit polyclonal anti-rBoTRAP2-1. A band corresponding to rBoTRAP2-1 was detected by reaction with serum from a
B. orientalis
-infected water buffalo, indicating that the protein has a high immunogenicity. IFA showed that BoTRAP2 is mainly localized on the apical end of parasites by rabbit anti-rBoTRAP2-1 polyclonal serum.
Conclusions
The rBoTRAP2 could differentiate serum from
B. orientalis
-infected water buffalo and normal water buffalo, implicating that BoTRAP2 has high immunogenicity and could serve as a candidate antigen for diagnosis of
B. orientalis
infection in buffalo.
Electronic supplementary material
The online version of this article (10.1186/s13071-019-3457-0) contains supplementary material, which is available to authorized users.
Context The majority of ecological studies of roads have focused on their deleterious effects, and these preconceptions have hampered a full evaluation of the ecological functions of roads. As an integrated indicator, road width represents comprehensive effects, including anthropogenic and natural disturbances. Objectives We try to explore the different effects produced by various road widths by considering changes in forest vegetation and soil. Methods We selected six study forests spanning from Shandong Province in the north to Guangdong Province in the south of China, and we assessed the influences of wide and narrow roads on plant species diversity, biomass, and soil properties along transects running from the forest edges and adjacent forest interior. We used a ''shape-dependent model'' to explain the factors that determine the magnitude of road effects on forests. Results Three variables measured in this study changed significantly with increasing distance from the road to the forest interior along wide roads: tree biomass, herbaceous plant biomass, and soil pH. However, no measurable biological or environmental effects were found from narrow roads. The different shapes of glades in a forest may be one reason for the various effects caused by roads of different widths. Conclusions Forest roads of different widths may have quite different ecological effects. While wider roads with large glades tend to have substantial negative impacts, small-enough roads may cause little disturbance to the forest. This suggests that not all forest roads should be perceived as the same, and narrow roads may be compatible with forest conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.