In this study, composition, structure and the functional properties of protein concentrate (WPC) and protein isolate (WPI) produced from defatted walnut flour (DFWF) were investigated. The results showed that the composition and structure of walnut protein concentrate (WPC) and walnut protein isolate (WPI) were significantly different. The molecular weight distribution of WPI was uniform and the protein composition of DFWF and WPC was complex with the protein aggregation. H0 of WPC was significantly higher (p < 0.05) than those of DFWF and WPI, whilst WPI had a higher H0 compared to DFWF. The secondary structure of WPI was similar to WPC. WPI showed big flaky plate like structures; whereas WPC appeared as a small flaky and more compact structure. The most functional properties of WPI were better than WPC. In comparing most functional properties of WPI and WPC with soybean protein concentrate and isolate, WPI and WPC showed higher fat absorption capacity (FAC). Emulsifying properties and foam properties of WPC and WPI in alkaline pH were comparable with that of soybean protein concentrate and isolate. Walnut protein concentrates and isolates can be considered as potential functional food ingredients.
As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.
Chemical composition, molecular weight distribution, secondary structure and effect of sodium chloride concentration on functional properties of walnut protein isolates, concentrates and defatted walnut flour were study. Compared with walnut protein concentrates (75.6%) and defatted walnut flour (52.5%), walnut protein isolates contain a relatively high amount of protein (90.5%). The yield of walnut protein isolates and concentrates was 43.2% and 76.6%, respectively. In molecular weight distribution study, Walnut protein isolates showed one peak with molecular weight of 106.33 KDa (100%) and walnut protein concentrates showed four peaks with molecular weight of 16,725 KDa (0.8%),104.943 KDa(63.9%), 7.3 KDa (11.4%), 2.6 KDa (23.9%). The secondary structure of walnut protein isolates was similar to that of walnut protein concentrates, but was differ from that of defatted walnut flour. The addition of sodium chloride (0~1 M) could improve the functionality of walnut protein concentrates, isolates and defatted walnut flour. The maximum solubility, water absorption capacity, emulsifying properties and foaming properties of walnut protein isolates, concentrates and defatted walnut flour were at sodium chloride solutions of 1.0 M, 0.6 M, 0.4 M, 0.6 M, respectively. The solubility of walnut protein concentrates (32.5%) in distilled water with 0 M sodium chloride was lower than that of walnut protein isolates (35.2%). The maximum solubility of walnut protein isolates, concentrates and defatted walnut flour in solution were 36.8%, 33.7% and 9.6% at 1.0 M sodium chloride solutions, respectively. As compared with other vegetable proteins, walnut protein isolates and concentrates exhibited better emulsifying properties and foam stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.