cis,cis-1,2,3,4-Tetraphenylbutadiene (TPBD) exhibits aggregation-induced emission (AIE) in the UV-blue band: the photoluminescence (PL) quantum yield of TPBD aggregates can differ from that of molecularly dissolved species by 2 orders of magnitude (>200). When the isolated molecules in solutions are cooled to extremely low temperature, they also emit intense light comparable to that in the solid state. TPBD thin layer shows on-off fluorescence switching behavior that can be utilized for the sensing of organic vapors. The phenyl substituents in TPBD are twisted in the solid state, and excimer formation is greatly prohibited. The cooling-enhanced emission of the TPBD solution and the fluorescence switching behavior suggest that the aggregation-induced emission is caused by restricted intramolecular rotation of the phenyl groups. The intramolecular phenyl rotations of TPBD can be regarded as rotational relaxations around their equilibrium positions, from which mean relaxation time is defined based on an Arrhenius equation. All the PL behaviors of TPBD can be well explained qualitatively by the magnitude of the relaxation time.
Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.