Rechargeable zinc–air batteries typically require efficient, durable, and inexpensive bifunctional electrocatalysts to support oxygen reduction/evolution reactions (ORR/OER). However, sluggish kinetics and mass transportation challenges must be addressed if the performance of these catalysts is to be enhanced. Herein, a strategy to fabricate a catalyst comprising atomically dispersed iron atoms supported on a mesoporous nitrogen‐doped carbon support (Fe SAs/NC) with accessible metal sites and optimized electronic metal–support interactions is developed. Both the experimental results and theoretical calculations reveal that the engineered electronic structures of the metal active sites can regulate the charge distribution of Fe centers to optimize the adsorption/desorption of oxygenated intermediates. The Fe SAs/NC containing Fe1N4O1 sites achieves remarkable ORR activity over the entire pH range, with half‐wave potentials of 0.93, 0.83, and 0.75 V (vs reversible hydrogen electrode) in alkaline, acidic, and neutral electrolytes, respectively. In addition, it demonstrates a promising low overpotential of 320 mV at 10 mA cm−2 for OER in alkaline conditions. The zinc–air battery assembled with Fe SAs/NC exhibits superior performance than that of Pt/C+RuO2 counterpart in terms of peak power density, specific capacity, and cycling stability. These findings demonstrate the importance of the electronic structure engineering of metal sites in directing catalytic activity.
The stability of organic solar cells is a key issue to promote practical applications. Herein, we demonstrate that the device performance of organic solar cells is enhanced by an Ir/IrOx electron-transporting layer, benefiting from its suitable work function and heterogeneous distribution of surface energy in nanoscale. Notably, the champion Ir/IrOx-based devices exhibit superior stabilities under shelf storing (T80 = 56696 h), thermal aging (T70 = 13920 h), and maximum power point tracking (T80 = 1058 h), compared to the ZnO-based devices. It can be attributed to the stable morphology of photoactive layer resulting from the optimized molecular distribution of the donor and acceptor and the absence of photocatalysis in the Ir/IrOx-based devices, which helps to maintain the improved charge extraction and inhibited charge recombination in the aged devices. This work provides a reliable and efficient electron-transporting material toward stable organic solar cells.
Graphitic carbon nitride (g‐C3N4) is a prominent polymer photocatalyst, yet it suffers from severe charge carrier recombination in photocatalysis. Herein, carbon nanotubes (CNTs) are in situ grown onto g‐C3N4 nanosheets via a chemical vapor deposition (CVD) process, catalyzed by Au nanoparticles (NPs) pre‐deposited on g‐C3N4 surface via deposition‐precipitation. Systematic characterizations, in particular femtosecond transient absorption spectroscopy (fs‐TAS) and time‐resolved photoluminescence (TR‐PL), prove that CNTs can efficiently extract the localized electrons in the tri‐s‐triazine units of g‐C3N4, thereby enhancing charge carrier diffusion and separation. As a result, CNT/Au/g‐C3N4 nanocomposites display a H2 evolution rate of 0.95 mmol g−1 h−1, which is about three times higher than that of Au/g‐C3N4. This work may pave a path to explore the full potential of CNTs to modify g‐C3N4 or other photocatalysts in solar‐to‐chemical energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.