Reconfigurable intelligent surfaces (RISs) constitute a promising performance enhancement for next-generation (NG) wireless networks in terms of enhancing both their spectral efficiency (SE) and energy efficiency (EE). We conceive a system for serving paired power-domain non-orthogonal multiple access (NOMA) users by designing the passive beamforming weights at the RISs. In an effort to evaluate the network performance, we first derive the best-case and worst-case of new channel statistics for characterizing the effective channel gains. Then, we derive the best-case and worst-case of our closed-form expressions derived both for the outage probability and for the ergodic rate of the prioritized user. For gleaning further insights, we investigate both the diversity orders of the outage probability and the high-signalto-noise (SNR) slopes of the ergodic rate. We also derive both the SE and EE of the proposed network. Our analytical results demonstrate that the base station (BS)-user links have almost no impact on the diversity orders attained when the number of RISs is high enough. Numerical results are provided for confirming that: i) the high-SNR slope of the RIS-aided network is one; ii) the proposed RIS-aided NOMA network has superior network performance compared to its orthogonal counterpart.
This paper investigates the application of simultaneous wireless information and power transfer (SWIPT) to cooperative non-orthogonal multiple access (NOMA). A new cooperative multiple-input single-output (MISO) SWIPT NOMA protocol is proposed, where a user with a strong channel condition acts as an energy-harvesting (EH) relay to help a user with a poor channel condition. The power splitting (PS) scheme is adopted at the EH relay. By jointly optimizing the PS ratio and the beamforming vectors, the design objective is to maximize the data rate of the "strong user" while satisfying the QoS requirement of the "weak user". It boils down to a challenging nonconvex problem. To resolve this issue, the semidefinite relaxation (SDR) technique is applied to relax the quadratic terms related with the beamformers, and then it is solved to its global optimality by two-dimensional exhaustive search. We prove the rank-one optimality, i.e., the SDR tightness, which establishes the equivalence between the relaxed problem and the original one. To further reduce the high complexity due to the exhaustive search, an iterative algorithm based on successive convex approximation (SCA) is proposed, which can at least attain its stationary point efficiently. In view of the potential application scenarios, e.g., Internet of Things (IoT), the single-input single-output (SISO) case of the cooperative SWIPT NOMA system is also studied. The formulated problem is proved to be strictly unimodal with respect to the PS ratio. Hence, a golden section search (GSS) based algorithm with closed-form solution at each step is proposed to find the unique global optimal solution. It is worth pointing out that the SCA method can also converge to the optimal solution in SISO cases. In the numerical simulation, the proposed algorithm is numerically shown to converge within a few iterations, and the SWIPT-aided Manuscript
Machine-to-machine (M2M) techniques have significant application potential in the emerging internet of things, which may cover many fields from intelligence to ubiquitous environment. However, because of the data exposure when transmitted via cable, wireless mobile devices, and other technologies, its security vulnerability has become a great concern during its further extending development. This problem may even get worse if the user privacy and property are considered. Therefore, the authentication process of communicating entities has attracted wide investigation. Meanwhile, the data confidentiality also becomes an important issue in M2M, especially when the data are transmitted in a public and thereby insecure channel. In this paper, we propose a promising M2M application model that connects a mobile user with the home network using the existing popular Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) network. Subsequently, a password-based authentication and key establishment protocol is designed to identify the communicating parties and hence establish a secure channel for data transmissions. The final analysis shows the reliability of our proposed protocol.A security authentication scheme in M2M home network service X. Sun et al.
Unmanned aerial vehicle (UAV) wireless communications have experienced an upsurge of interest in both military and civilian applications, due to its high mobility, low cost, on-demand deployment, and inherent line-of-sight (LoS) air-to-ground channels. However, these benefits also make UAV wireless communication systems vulnerable to malicious eavesdropping attacks. In this article, we aim to examine the physical layer security issues in UAV systems. In particular, passive and active eavesdroppings are two primary attacks in UAV systems. We provide an overview on emerging techniques, such as trajectory design, resource allocation, and cooperative UAVs, to fight against both types of eavesdroppings in UAV wireless communication systems. Moreover, the applications of non-orthogonal multiple access, multiple-input and multiple-output, and millimeter wave in UAV systems are also proposed to improve the system spectral efficiency and to guarantee security simultaneously. Finally, we discuss some potential research directions and challenges in terms of physical layer security in UAV systems. X. Sun, Y. Xu, and Z. Zhong are with the State Key Lab of Rail Traffic Control and Safety and the Beijing Engineering Research Center of High-speed Railway Broadband Mobile Communications, Beijing Jiaotong University, 2 communication networks with fixed infrastructures are unable to meet the increasingly stringent quality-of-service (QoS) requirements in the fifth-generation (5G) and beyond 5G networks. As a result, the development of unmanned aerial vehicle (UAV) has created a fundamental paradigm shift in wireless communication systems to facilitate fast and highly flexible deployment of communication infrastructures. In particular, by exploiting the high maneuverability of UAV, communication links can be established ubiquitously, especially in temporary hotspots, disaster areas, and complex terrains. Compared to traditional terrestrial wireless communications, UAV wireless communications have the following unique features [1]: • On-demand and swift deployment: UAV enables fast establishment of temporal communication infrastructures in emergency scenarios where legacy or fixed infrastructures are destroyed or do not exist, such as disaster rescue, remote sensing, firefighting, and others. The deployment of UAV facilitates cost-efficient and uninterrupted communications. • High flexibility: Due to the fully controllable three-dimensional (3D) mobility, UAV can either stay quasi-stationarily or cruise continuously to a dedicated location, depending on the requirements of wireless communication systems. The movement of UAVs provides a new degree of freedom to offer efficient communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.