Background The clinical significance of miR-17 in patients with acute myeloid leukemia (AML) remains unknown. Methods Real-time quantitative reverse transcription-polymerase chain reaction (qPCR) was performed to detect the miR-17 expression in 115 de novo AML patients, 31 patients at complete remission (CR) time, 8 patients at relapse time and 30 normal controls. Results MiR-17 was upregulated in de novo AML compared with normal controls. Patients with high expression of miR-17 had less CEBPA double mutation, less favorable ELN-risk and lower CR rate. The level of miR-17 was significantly decreased at CR phase and was returned to primary level even higher when in relapse phase. In addition, Cox regression analysis revealed that miR-17 expression retained independent prognostic significance for overall survival (OS). Moreover, the gene-expression profile analysis of miR-17 in AML obtained from TCGA database was involved in multiple biological functions and signal pathways. Among the differential expressed genes (DEGs), we identified FGL2, PLAUR, SLC2A3, GPR65, CTSS, TLR7, S1PR3, OGFRL1, LILRB1, IL17RA, SIGLEC10, SLAMF7, PLXDC2, HPSE, TCF7 and MYCL as potential direct targets of miR-17 according to in silico analysis. Conclusions High expression of miR-17 in de novo AML patients pointed to dismal clinical outcome and disease recurrence, which could serve as novel prognostic biomarker for AML patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.