We address the multi-satellite scheduling problem with limited observation capacities that arises from the need to observe a set of targets on the Earth's surface using imaging resources installed on a set of satellites. We define and analyze the conflict indicators of all available visible time windows of missions, as well as the feasible time intervals of resources. The problem is then formulated as a mixed integer linear programming model, in which constraints are derived from a careful analysis of the interdependency between feasible time intervals that are eligible for observations. We apply the proposed model to several different problem instances that reflect real-world situations. The computational results verify that our approach is effective for obtaining optimum solutions or solutions with a very good quality.
This paper proposes a novel technique to compute the revisit time of satellites within repeat ground tracks. Different from the repeat cycle which only depends on the orbit, the revisit time is relevant to the payload of the satellite as well, such as the tilt angle and swath width. The technique is discussed using the Bezout equation and takes the gravitational second zonal harmonic into consideration. The concept of subcycles is defined in a general way and the general concept of "small" offset is replaced by a multiple of the minimum interval on equator when analyzing the revisit time of remote sensing satellites. This technique requires simple calculations with high efficiency. At last, this technique is used to design remote sensing satellites with desired revisit time and minimum tilt angle. When the side-lap, the range of altitude, and desired revisit time are determined, a lot of orbit solutions which meet the mission requirements will be obtained fast. Among all solutions, designers can quickly find out the optimal orbits. Through various case studies, the calculation technique is successfully demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.