In this paper, we investigate the exact solutions and conservation laws of (2 + 1)-dimensional time fractional Navier–Stokes equations (TFNSE). Specifically, Lie symmetries and corresponding one-dimensional optimal system for TFNSE in Riemann–Liouville sense are obtained. Then, based on the admitted symmetries and optimal system, we reduce these equations to one-dimensional equations or (1 + 1)-dimensional fractional partial differential equations (PDEs) with the help of Erdélyi–Kober fractional differential operator and compound variable transformation. In addition, we solve the reduced PDEs applying power series expansion method and invariant subspace method, respectively. Furthermore, the conservation laws of TFNSE are derived using new Noether theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.