Folding of RNA can produce elaborate tertiary structures, corresponding to their diverse roles in the regulation of biological activities. Direct observation of RNA structures at high resolution in their native form however remains a challenge. The large vestibule and the narrow constriction of a Mycobacterium smegmatis porin A (MspA) suggests a sensing mode called nanopore trapping/translocation, which clearly distinguishes between microRNA, small interfering RNA (siRNA), transfer RNA (tRNA) and 5 S ribosomal RNA (rRNA). To further profit from the acquired event characteristics, a custom machine learning algorithm is developed. Events from measurements with a mixture of RNA analytes can be automatically classified, reporting a general accuracy of ~93.4%. tRNAs, which possess a unique tertiary structure, report a highly distinguishable sensing feature, different from all other RNA types tested in this study. With this strategy, tRNAs from different sources are measured and a high structural conservation across different species is observed in single molecule.
Ribonucleic acid (RNA) is a pivotal nucleic acid that plays a crucial role in regulating many biological activities. Recently, one study utilized a machine learning algorithm to automatically classify RNA structural events generated by a Mycobacterium smegmatis porin A nanopore trap. Although it can achieve desirable classification results, compared with deep learning (DL) methods, this classic machine learning requires domain knowledge to manually extract features, which is sophisticated, labor-intensive and time-consuming. Meanwhile, the generated original RNA structural events are not strictly equal in length, which is incompatible with the input requirements of DL models. To alleviate this issue, we propose a sequence-to-sequence (S2S) module that transforms the unequal length sequence (UELS) to the equal length sequence. Furthermore, to automatically extract features from the RNA structural events, we propose a sequence-to-sequence neural network based on DL. In addition, we add an attention mechanism to capture vital information for classification, such as dwell time and blockage amplitude. Through quantitative and qualitative analysis, the experimental results have achieved about a 2% performance increase (accuracy) compared to the previous method. The proposed method can also be applied to other nanopore platforms, such as the famous Oxford nanopore. It is worth noting that the proposed method is not only aimed at pursuing state-of-the-art performance but also provides an overall idea to process nanopore data with UELS.
As the third-generation sequencing technology, nanopore sequencing has been used for high-throughput sequencing of DNA, RNA, and even proteins. Recently, many studies have begun to use machine learning technology to analyze the enormous data generated by nanopores. Unfortunately, the success of this technology is due to the extensive labeled data, which often suffer from enormous labor costs. Therefore, there is an urgent need for a novel technology that can not only rapidly analyze nanopore data with high-throughput, but also significantly reduce the cost of labeling. To achieve the above goals, we introduce active learning to alleviate the enormous labor costs by selecting the samples that need to be labeled. This work applies several advanced active learning technologies to the nanopore data, including the RNA classification dataset (RNA-CD) and the Oxford Nanopore Technologies barcode dataset (ONT-BD). Due to the complexity of the nanopore data (with noise sequence), the bias constraint is introduced to improve the sample selection strategy in active learning. The experimental results show that for the same performance metric, 50% labeling amount can achieve the best baseline performance for ONT-BD, while only 15% labeling amount can achieve the best baseline performance for RNA-CD. Crucially, the experiments show that active learning technology can assist experts in labeling samples, and significantly reduce the labeling cost. Active learning can greatly reduce the dilemma of difficult labeling of high-capacity nanopore data. We hope active learning can be applied to other problems in nanopore sequence analysis. Availability The main program is available at https://github.com/guanxiaoyu11/AL-for-nanopore. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.