The microbial interactions between autotrophs and heterotrophs by the exchange of microbial products in a partial nitritation/anammox (PN/A) bioreactor were evaluated with both experimental and simulation analyses. Real-time quantitative PCR analysis showed that anammox bacteria (AMX) and ammonium oxidizing bacteria (AOB) made up 56.59% and 8.35% of total bacteria, respectively, while heterotrophs identified as Chloroflexi also constituted a large portion (32.76%) in the reactor, even without an external organic carbon supply. Furthermore, a mathematical model was developed to describe the growth of heterotrophs on soluble microbial products (SMP), which were released from the metabolism of autotrophs. After model calibration and validation, the simulation results were consistent with the experimental observations of the microbial composition and the nitrogenous transformations. According to the model analysis, the bulk oxygen concentration was determined to be the dominant factor governing the reactor performance and biomass fractions in the granule. Increasing granular size could decrease heterotrophic growth, but has little effect on the effluent concentration of SMP. Results of this study could establish a better understanding of eco-physiological interactions of autotrophs and heterotrophs in PN/A process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.