Thanks to the large scope, high spatial resolution, and increasing data records, satellite-based precipitation products are playing an increasingly important role in drought monitoring. First, based on the data from ground sites, the long-term Multi-Source Weighted-Ensemble Precipitation (MSWEP) precipitation product was evaluated in respect to drought monitoring. Then, based on the MSWEP product, the drought trends and the spatiotemporal characteristics of the drought events in four major basins (Amu Darya Basin, Syr Darya Basin, Chu-Talas River Basin, and Ili River Basin) in Central Asia, which have relatively dense gauge sites, were studied. The Standardized Precipitation Index (SPI) and the run theory were used to identify drought events and describe their characteristics. The results showed that MSWEP can effectively capture drought events and their basic characteristics. In the past 40 years, the study area experienced 27 drought events, among which the severest one (DS = 15.66) occurred from June 2007 to September 2008. The drought event that occurred from June 1984 to October 1984 had a drought peak value of 3.39, with the largest drought area (99.2%). Since 1881, there appeared a drying trend and a wetting trend in the Amu Darya River basin and the Ili River basin, respectively. No obvious wetting or drying trend was found in both the Chu-Talas River basin and the Syr Darya basin. Since 2016, the drought area has been on the increase.
Satellite-based precipitation products (SPPs) provide valuable precipitation information for various applications. Their performance, however, varies significantly from region to region due to various data sources and production processes. This paper aims to evaluate four selected SPPs (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR), Multi-Source Weighted-Ensemble Precipitation (MSWEP), Gauge-adjusted Global Satellite Mapping of Precipitation (GSMAP-gauge), and Global Precipitation Measurement (GPM)) over mainland China from 2016 to 2019. Both conventional statistical indicators (e.g., correlation coefficients (CC), root mean square error (RMSE), mean absolute error (MAE), relative bias (RB), and Nash–Sutcliffe efficiency (NSE)) and categorical indicators (probability of detection (POD), probability of true detection (POTD), false-alarm rate (FAR), and critical success index (CSI)) are used for quantitative analysis. The results show that: (1) GSMAP-gauge and GPM perform best in reproducing the spatial distribution pattern of precipitation over mainland China, whereas SPPs generally underestimate summer precipitation with a high frequency of no-rain cases. (2) MSWEP has the best capability for recording precipitation events, although some parts of northern China exhibit abnormal overestimations for winter precipitation. (3) All SPPs, especially the PERSIANN-CDR, significantly underestimate the precipitation in the mountainous areas of southwestern China. (4) The GSMAP-gauge and GPM outperformed the other two of the four SPPs, in terms of the probability density function of daily precipitation for cases (PDFc) and the probability density function of daily precipitation for volume (PDFv). Generally, PERSIANN-CDR shows the poorest performance when compared to the other three products. The product’s algorithm for estimating heavy precipitation and mountainous precipitation needs further improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.